Abstract:
An autonomous coverage robot includes a chassis having forward and rearward portions and a drive system carried by the chassis. The forward portion of the chassis defines a substantially rectangular shape. The robot includes a cleaning assembly mounted on the forward portion of the chassis and a bin disposed adjacent the cleaning assembly and configured to receive debris agitated by the cleaning assembly. A bin cover is pivotally attached to a lower portion of the chassis and configured to rotate between a first, closed position providing closure of an opening defined by the bin and a second, open position providing access to the bin opening. The robot includes a body attached to the chassis and a handle disposed on an upper portion of the body. A bin cover release is actuatable from substantially near the handle.
Abstract:
A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
Abstract:
A method of confining a robot in a work space includes providing a portable barrier signal transmitting device including a primary emitter emitting a confinement beam primarily along an axis defining a directed barrier. A mobile robot including a detector, a drive motor and a control unit controlling the drive motor is caused to avoid the directed barrier upon detection by the detector on the robot. The detector on the robot has an omnidirectional field of view parallel to the plane of movement of the robot. The detector receives confinement light beams substantially in a plane at the height of the field of view while blocking or rejecting confinement light beams substantially above or substantially below the plane at the height of the field of view.
Abstract:
A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
Abstract:
A surface treatment robot includes a chassis having forward and rear ends and a drive system carried by the chassis. The drive system includes right and left driven wheels and is configured to maneuver the robot over a cleaning surface. The robot includes a vacuum assembly, a collection volume, a supply volume, an applicator, and a wetting element, each carried by the chassis. The wetting element engages the cleaning surface to distribute a cleaning liquid applied to the surface by the applicator. The wetting element distributes the cleaning liquid along at least a portion of the cleaning surface when the robot is driven in a forward direction. The wetting element is arranged substantially forward of a transverse axis defined by the right and left driven wheels, and the wetting element slidably supports at least about ten percent of the mass of the robot above the cleaning surface.
Abstract:
A piezoelectric debris sensor and associated signal processor responsive to debris strikes enable an autonomous or non-autonomous cleaning device to detect the presence of debris and in response, to select a behavioral mode, operational condition or pattern of movement, such as spot coverage or the like. Multiple sensor channels (e.g., left and right) can be used to enable the detection or generation of differential left/right debris signals and thereby, enable an autonomous device to steer in the direction of debris.
Abstract:
The present invention discloses a system for confining the movement of a robot such that certain area(s) are temporarily or permanently excluded from its working territory. The system uses light-absorbing, black-out paper stripe(s) capable of a complete absorption of light including infrared. The system also uses a mobile robot equipped with infrared emitters and infrared-reflection detectors that communicate the existence of infrared reflection or the lack of it to the robot's control unit. The control unit controls the wheel drivers and ensures that the robot continues travelling only as long as the reflection of infrared signals are detected from the surface onto which it is headed. In this system therefore, the said black-out papers act as a fence that the robot cannot pass because they prevent the reflection of infrared light from the spot(s) where they are placed and force the robot to stop and change directions when it encounters a black-out stripe.
Abstract:
A movement operation system for autonomous moving cleaning apparatus comprises a charging dock and an autonomous moving cleaning apparatus. The charging dock includes a charging module and an infrared ray emitter. The autonomous moving cleaning apparatus includes a battery, at least one servomotor, an infrared ray receiver and a microcontroller unit. The infrared ray receiver receives an encrypted infrared signal emitted by the infrared ray emitter and sends the encrypted infrared signal to the microcontroller unit for decoding. The microcontroller unit detects whether the present voltage of the battery is higher than a charge voltage of the charging module, and generates a control signal to control the servomotor to move the autonomous moving cleaning apparatus away from the charging dock or to the charging dock for charging the battery.
Abstract:
A control method of a robot cleaner for traveling to clean includes checking information about a predetermined traveling pattern; determining a traveling trajectory based on a traveling speed; generating a traveling pattern based on the determined traveling trajectory and the information about the predetermined traveling pattern, wherein the traveling pattern includes a first straight path, a first rotation path connected to the first straight path and for rotation in a first direction, a second straight path connected to the first rotation path, and a second rotation path connected to the second straight path and for rotation in a second direction; and repeatedly traveling along the generated traveling pattern at regular intervals. Therefore, since the robot cleaner performs cleaning without scattering dust, the efficiency of cleaning may be improved.
Abstract:
A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.