Abstract:
An integrated, tunable inductance network features a number of fixed inductors fabricated on a common substrate along with a switching network made up of a number of micro-electromechanical (MEM) switches. The switches selectably interconnect the inductors to form an inductance network having a particular inductance value, which can be set with a high degree of precision when the inductors are configured appropriately. The preferred MEM switches introduce a very small amount of resistance, and the inductance network can thus have a high Q. The MEM switches and inductors can be integrated using common processing steps, reducing parasitic capacitance problems associated with wire bonds and prior art switches, increasing reliability, and reducing the space, weight and power requirements of prior art designs. The precisely tunable high-Q inductance network has wide applicability, such as in a resonant circuit which provides a narrow bandwidth frequency response which peaks at a specific predetermined frequency, making possible a highly selective performance low noise amplifier (LNA), or in an oscillator circuit so that a precise frequency of oscillation can be generated and changed as needed.
Abstract:
A broadcast transmitter for generating low power modulated signals, especially for a wireless speaker system. A signal source such as a source of composite audio signals including left and right audio signals and a pilot signal are applied to a radio frequency signal oscillator. The radio frequency signal oscillator includes a bipolar transistor connected in a common base configuration, and having a stripline element as a frequency determinative component in the collector circuit of the bipolar transistor. The modulating signal is applied to the base of the bipolar transistor which modulates the collector junction capacitance of the transistor thereby frequency modulating the signal produced by the oscillator. Varactor tuning is provided for setting a nominal frequency of oscillation.
Abstract:
The invention concerns oscillator circuits, more particularly coupling arrangements between an oscillator and an amplifier stage following the oscillator. The solution according to the invention optimizes the intensity of the coupling between the oscillator and the following amplifier stage so that the desired output level of the oscillator circuit is gained but the oscillator is loaded as little as possible. In the system according to the invention, the impedance value of the circuit element between the oscillator and the amplifier stage has been arranged to be automatically adjustable so that it is always adjusted to its smallest value, on which the desired output level of the oscillator coupling can still be gained. The coupling can, for example, be formed by means of a capacitance diode, the bias voltage of which is adjusted according to the direct voltage detected at the output level of the amplifier stage.
Abstract:
A bipolar negative resistance UHF oscillator having a voltage tunable resonator in its emitter circuit is operated at a fixed collector bias current and an RF detector is used as a convenient way to determine the RF current at which the oscillator is operating, by sensing the amplitude of the oscillator's output RF voltage across a constant load. An integrating error amplifier referenced to a desired detector output level responds to the actual detector output level to control the collector bias voltage for the oscillator and maintain the output of the oscillator at a fixed amplitude. Since the collector bias current is fixed, this keeps the operating point at fixed relation with respect to emitter cutoff. That relationship is chosen to be "just below" by initial selection of the constant collector bias current and the reference voltage used by the integrating error amplifier. The result is a VCO tunable over an octave with minimal phase noise, near maximum power output and immunity to temperature variations and shifts in oscillator device parameters.
Abstract:
The invention is related to an electrically tunable voltage-controlled oscillatory circuit, wherein the negative bias voltage (-Vcf) of a capacitance diode (5) needed for tuning the center frequency of the oscillatory circuit is generated on the basis of an electric oscillating signal (RFout) produced by the oscillatory circuit itself. Said oscillating signal is used for generating a negative voltage with a clamp/voltage multiplier type circuit (15) and it is adjusted to a desired value with an adjustment circuit (14), in which the values of the components (R2) can be permanently adjusted suitable in the tuning stage. Alternatively, the adjustment circuit (14) may include an active component (Q1) which can have an effect on the value of the negative bias voltage (-Vcf) during the use of the oscillatory circuit.
Abstract:
A variable-frequency oscillator configuration, in particular for tuners, includes a feedback network for an oscillator amplifier. The feedback network contains a series circuit formed by two resonant circuit inductors and a resonant circuit capacitor, connected in parallel with a series circuit formed by a further resonant circuit capacitor and a variable capacitor. A switching device is connected to a coupling node between the two inductors, for short circuiting the first resonant circuit capacitor and the resonant circuit inductor connected thereto under the control of a switching signal. The feedback network can consequently be switched over between two frequency bands and is symmetrical with regard to the high-frequency effect.
Abstract:
A phase-locked loop circuit comprises a VCO and a ramp generator. The ramp generator has an output connected to a control terminal of the VCO. A center frequency control loop is connected between a signal output terminal of the VCO and a first ramp control input of the ramp generator and a spread spectrum control loop is connected between the signal output terminal of the VCO and a second ramp control input of the ramp generator. The signals applied to the ramp control inputs of the ramp generator by the two control loops control respective characteristics of a periodic voltage ramp signal that is generated by the ramp generator at its signal output terminal.
Abstract:
The invention provides a piezoelectric oscillator including a semiconductor integrated circuit and a piezoelectric resonator or a voltage-controlled oscillator including a semiconductor integrated circuit, a piezoelectric resonator and another electronic component. The piezoelectric resonator has a cross-sectional shape of an ellipse or a track. The semiconductor integrated circuit and the electronic component are molded with a resin into a very thin unit.
Abstract:
A differential delay stage for a ring oscillator utilizes a resonant circuit formed by an inductor and a capacitor consisting of two varactor diodes connected back-to-back. A common cathode connection is connected to a variable voltage source to vary the capacitance of the diodes. Other forms of capacitors may replace the varactor diodes. Varying the capacitance value varies the resulting oscillation frequency of the ring oscillator. When several delay stages, each incorporating the resonant circuit, are connected together in a ring, the net effect is to allow only a signal at the resonant frequency of the resonant circuits to propagate around the ring. Other oscillator circuits employing a resonant circuit are disclosed.
Abstract:
A radio frequency (RF) transceiver includes a direct modulation transmitter and single down-conversion receiver for operation in a time-division-duplex (TDD) telecommunications environment. A single RF signal source, in the form of a phase-lock-loop (PLL), is used on a time-shared basis to provide both the carrier signal for the transmitter and the local oscillator (LO) signal for the receiver. In the transmitter, direct modulation is effected by modulating a voltage-controlled oscillator (VCO) in the PLL with a burst of the transmit data while opening the loop and holding the loop feedback tuning voltage constant. In the receiver, a self-adjusting comparator threshold is provided for automatically setting and adjusting a demodulated signal comparison threshold used in retrieving the data and data clock from the demodulated receive signal. The interface between the transmitter and receiver and the host controller provides the control signals needed for the time-sharing of the single RF signal source, the proper programming of the PLL for the different transmitter carrier and receiver LO frequencies, the PLL loop control for the direct modulation of the VCO, and the enablement, or powering down, of the transmitter and receiver sections to minimize transceiver power consumption.