Abstract:
The present application a digital self-interference residual cancellation method that adjusts a magnitude of a sampled transmit signal based on compared magnitude and phases associated with tones. The digital self-interference residual cancellation method may follow an analog carrier cancellation stage where the digital self-interference residual cancellation is based on a determination of the channel circuit response used to control an infinite impulse response filter which can compensate using both poles and zeroes.
Abstract:
A multi-mixer system comprising a plurality of mixers and a filter module is provided. Each of the mixers is selectively enabled to mix an input signal with a corresponding oscillation signal to generate an output signal at an output node; and the filter module provides different frequency responses for the output signals from at least two of the output nodes of the mixers, wherein the at least two of the output nodes of the mixers are connected to different internal nodes of the filter module.
Abstract:
A receiver for radiofrequency signals designed to be installed on board a satellite comprises: a device for frequency controlling the receiver allowing the reception frequency of the receiver to be adjusted based on a frequency command; and a filtering assembly of the bandpass filter type having a passband, referred to as passband of the filtering assembly, having an adjustable passband width able to take a set of values, the filtering assembly allowing the bandwidth of a first signal representative of the input signal of the receiver to be limited to the passband of the filtering assembly; adjustment means allowing the width of the passband of the filtering assembly to be adjusted using a filtering passband control; power acquisition means allowing a measurement of the power of the first signal to be delivered at the output of the filtering assembly.
Abstract:
The present invention generally relates to an impulse noise canceller for DSL systems. According to certain aspects, embodiments of the invention provide a dual sensor receiver to deal with the impulse noise effectively. The second sensor can be incorporated by either a common mode or unused differential port. Alternatively a power line sensor can also act as a sensor. According to certain additional aspects, embodiments of the invention provide various alternative implementations of an impulse noise canceller within a DSL receiver. According to still further aspects, embodiments of the invention provide methods for selectively training an impulse noise canceller in the various implementations.
Abstract:
A method for interference estimation and mitigation includes receiving a high-resolution digital signal. The high-resolution digital signal comprises a signal of interest and an interfering signal. An estimate of the interfering signal is generated using a quantizer. The signal of interest is in a quantization noise of the quantizer. An interference-mitigated signal of interest is generated based on a difference of the estimate of the interfering signal and the high-resolution digital signal.
Abstract:
A complex-pole load is configured as a parallel circuit, having 4 transistors arranged in pairs. Each pair of transistors has a transistor gated by a control voltage sources, and connected in parallel with a transistor diode connected for gating by the respective input. The control voltage sources result in the circuit synthesizing a first order complex pole at a positive IF (+IF) or a negative IF (−IF) for channel selection and image rejection, offering image rejection and channel selection concurrently.
Abstract:
A cellular radio architecture that includes a programmable bandpass sampling radio frequency front-end and an optimized digital baseband. The architecture includes a multiplexer having signal paths that include a bandpass filter that passes a different frequency band than the other bandpass filters and a circulator that provides signal isolation between the transmit signals and the receive signals. The architecture also includes a receiver module having a separate signal channel for each of the signal paths in the multiplexer, where each signal channel in the receiver module includes a receiver delta-sigma modulator that converts analog receive signals to a representative digital signal. The architecture further includes a transmitter module having a transmitter delta-sigma modulator for converting digital data bits to analog transmit signals, where the transmitter module includes a power amplifier and a switch for directing the transmit signals to one of the signal paths in the multiplexer.
Abstract:
In a wireless communication system, a method for configuring multiple antennas of a receiver may include configuring a primary antenna of the multiple antennas with a narrow band filter passing a selected uplink channel, and configuring a secondary antenna of the multiple antennas with a broad band filter passing multiple uplink channels. The receiver may sense the power of the multiple uplink channels received via the secondary antenna for use in controlling downlink power. Broad band configuration of the secondary antenna may be intermittent, interspersed with a narrow band filter configuration for diversity reception. The receiver may determine which of the multiple antennas is primary by sensing which antenna is receiving the strongest signal on the selected uplink channel. Different levels of automatic gain control may be applied to signals from respective different ones of the multiple antennas.
Abstract:
The present application suggests a receiver and a method of operating thereof for determining a noise estimate based on a radio frequency signal from an interference source over different propagation paths through a plurality of antennas. A covariance matrix estimator coupled through separate processing paths to a respective one of the plurality of antennas is arranged to determine an estimate of a covariance matrix based on the received radio frequency signal. A noise estimator coupled to the covariance matrix estimator for receiving the estimate of the covariance matrix is arranged to determine a noise estimate by solving a polynomial equation of second order as a function of the noise estimate on the basis the elements of the covariance matrix estimate relating to a set of two antennas.
Abstract:
A multiplexer device includes at least one acoustic band pass filter connected to a common port, and a hybrid LC/acoustic filter connected to the common port in parallel with the at least one acoustic band pass filter. Each acoustic band pass filter has a corresponding passband and includes multiple acoustic resonators. The hybrid LC/acoustic filter includes at least one acoustic resonator, and has at least one capacitor replaced by a corresponding at least one acoustic resonator, respectively. Each of the at least one acoustic resonator included in the hybrid LC/acoustic filter provides a stopband response when operating in a corresponding acoustic frequency range, and acts as a capacitor when operating in a corresponding non-acoustic frequency range.