Wireless charging circuit and system

    公开(公告)号:US11201503B2

    公开(公告)日:2021-12-14

    申请号:US16711465

    申请日:2019-12-12

    Abstract: An exemplary embodiment of the present invention is a wireless power transmission circuit that provides power to a load of variable resistance with an alternating current (AC) power source induced at a secondary coil in a secondary side of the circuit by a primary coil in a primary side of the said circuit. The wireless power transmission circuit includes a switch-controlled capacitor (SCC) and a semi-active rectifier (SAR). The SCC connects to the AC power source. The SCC includes a first capacitor connected in parallel with two electrically controllable switches in series. The SAR connects to output of the SCC for rectifying the output of the SCC, wherein the SAR comprises a bridge circuit that includes two electrically controllable switches. A control angle of the SCC and a conduction angle of the SAR are regulated to provide a load impedance that matches the impedance of the coils.

    WIRELESS CHARGING CIRCUIT AND SYSTEM

    公开(公告)号:US20210184499A1

    公开(公告)日:2021-06-17

    申请号:US16711465

    申请日:2019-12-12

    Abstract: An exemplary embodiment of the present invention is a wireless power transmission circuit that that provides power to a load of variable resistance with an alternating current (AC) power source induced at a secondary coil in a secondary side of the circuit by a primary coil in a primary side of the said circuit. The wireless power transmission circuit includes a switch-controlled capacitor (SCC) and a semi-active rectifier (SAR). The SCC connects to the AC power source. The SCC includes a first capacitor connected in parallel with two electrically controllable switches in series. The SAR connects to output of the SCC for rectifying the output of the SCC, wherein the SAR comprises a bridge circuit that includes two electrically controllable switches. Both switches in the SCC are turned on for half a cycle and complement to each other and are turned off with a time delay relative to the zero cross points of the AC power source, and the time delay is a control angle of the SCC. Both switches in the SAR are turned on for half a cycle and complement to each other and are turned off with a time delay relative to the zero cross points of the AC power source, and that time delay is a conduction angle of the SAR. The control angle of the SCC and the conduction angle of the SAR are regulated to provide a load impedance that matches the impedance of the coils, so that the wireless power transmission provides constant power output and enhance the power transmission efficiency.

    Method of mitigating cardiovascular hypertrophy and perivascular fibrosis induced by angiotensin II

    公开(公告)号:US11007266B2

    公开(公告)日:2021-05-18

    申请号:US16032482

    申请日:2018-07-11

    Inventor: Hang Fai Kwok

    Abstract: Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. In vascular smooth muscle cells, a metaloproteinase ADAM17 mediates epidermal growth factor receptor (EGER) transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Treatment with a human cross-reactive ADAM17 inhibitory antibody (A9B8) also prevented cardiovascular, remodeling and ER stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via EGFR activation independent of blood pressure regulation. ADAM17 presents a unique therapeutic target for antibodies such as A9B8 for the prevention of hypertensive complications.

    Integrated circuit for simultaneous electrophysiology recording and optogenetic neural control

    公开(公告)号:US11000225B2

    公开(公告)日:2021-05-11

    申请号:US16024217

    申请日:2018-06-29

    Abstract: Various embodiments of the present technology generally relate to a single monolithic IC to perform simultaneous optogenetic neural inhibition and extracellular electrophysiological recording in-vivo. Some embodiments include a low input capacitance (e.g., 9.7 pF) amplifier particularly tailored for the use of high-impedance electrodes to conduct single neuron extracellular recording integrated with programmable high current drivers for optogenetic stimulation or inhibition on the same IC chip. Some embodiments use a noise model to guide the IC design process to obtain parameters for optimal signal-to-noise ratio. The performance of the IC chip was demonstrated on an anesthetized gerbil expressed with inhibitory optogenetic protein (Halorhodopsin). Spontaneous action potentials from the fifth nerve of the brainstem were recorded by the amplifier and were subsequently inhibited by laser illumination. As a result, various embodiments of the IC allow neuroscience research and neural engineering applications to be conducted in an entirely new direction and can potentially be used in treatments for human mental diseases in the future.

    CELL MICROINJECTION SYSTEM WITH FORCE FEEDBACK

    公开(公告)号:US20190292567A1

    公开(公告)日:2019-09-26

    申请号:US16364458

    申请日:2019-03-26

    Inventor: Qingsong XU

    Abstract: A novel piezo-driven cell injection system with force feedback overcomes the unsatisfied force interaction between the pipette needle and embryos in conventional position control. By integrating semiconductor strain-gage sensors for detecting the cell penetration force and the micropipette relative position in real time, the developed cell microinjection system features high operation speed, confident success rate, and high survival rate. The effectiveness of the developed cell injection system is experimentally verified by penetrating zebrafish embryos. The injection of 100 embryos are conducted with separate position control and force control. Results indicate that the force control enables a survival rate of 86%, which is higher than the survival rate of 82% produced by the position control in the same control environment. The experimental results quantitatively demonstrate the superiority of force control over conventional position control for the first time.

    Hybrid STATCOM with wide compensation range and low DC-link voltage

    公开(公告)号:US10003195B1

    公开(公告)日:2018-06-19

    申请号:US15425270

    申请日:2017-02-06

    Abstract: A hybrid-STATCOM for providing compensating reactive power required by a load, the hybrid-STATCOM comprising: a TCLC part for each electric power phase, each TCLC part comprising: a coupling inductor; a power filter capacitor; and a thyristor-controlled reactor connected in series with a power filter inductor; and an active inverter part comprising: a voltage source inverter for each electric power phase; and a DC-link capacitor connected in parallel with the voltage source inverters. The control strategy of the hybrid-STATCOM is separated into two parts: TCLC part control and Active inverter part control. The TCLC part control is based on the instantaneous pq theory and aims to compensate the loading reactive power with the controllable TCLC part impedance. The active inverter part control is based on the instantaneous active and reactive current id-iq method and aims to improve the overall performance of the hybrid-STATCOM under different voltage and current conditions.

Patent Agency Ranking