Abstract:
A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.
Abstract:
A fiber optic telecommunications frame is provided including panels having front and rear termination locations, the panels positioned on left and right sides of the frame. The frame includes vertical access for the rear cables. The frame further includes left and right vertical cable guides for the front patch cables. The frame further includes cable storage spools for the patch cables. The frame includes a horizontal passage linking the left and right panels and the cable guides. A portion of the frame defines splice tray holders and a central passage from the splice tray holders to the rear sides of the left and right panels. From a front of each panel, access to a rear of the panel is provided by the hinged panels. Alternatively, the panels can form connector modules with front termination locations and rear connection locations for connecting to the rear cables. The modules can house couplers, such as splitters, combiners, and wave division multiplexers. The termination locations can be located on the same side of the frame as the splice tray holders, or on an opposite side. An enclosure of the frame included hinged or otherwise moveable panels to allow access to the terminations or the splice trays.
Abstract:
A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.
Abstract:
A fiber distribution device includes a swing frame chassis pivotally mounted to a support structure. At least a first optical splitter module is mounted to the swing frame chassis. Pigtails having connectorized ends are carried by the swing frame chassis and have portions that are routed generally vertically on the swing frame chassis. An optical termination field includes fiber optic adapters carried by the swing frame chassis. The fiber optic adapters are configured to receive the connectorized ends of the pigtails.
Abstract:
The invention relates to a distributor device for use in communication and data systems technology, comprising at least one distributor connection module. Said distributor connection module comprises a housing which houses input and output contacts, accessible from the exterior, for connecting lines, cables or wires. The distributor device comprises at least one additional connection module which comprises at least one SDH/SONET transport interface and outputs for electrical signals. The outputs of the connection module are connected to inputs of the distributor connection module. The connection module comprises at least one converter for converting SDH/SONET transport signals to E1 signals and vice versa. The invention also relates to a corresponding connection module and a corresponding distributor connection module.
Abstract:
The present invention relates to a telecommunications termination panel with a tray pivotably mounted within the front opening of a housing. The tray pivots about a hinge located adjacent one of the sides of the housing and includes a raised floor. The raised floor of the tray cooperates with the side adjacent the hinge and a bottom of the housing to define a cable path from a rear cable access port to an opening on the tray adjacent the hinge. The tray includes a plurality of connection locations and cable management structures to direct a telecommunications cable from the cable access port to a rear of the connection locations without violating bend radius rules. The tray may also include a temporary cable holder to assist in pulling cables through the rear opening into the housing. The present invention further relates to a telecommunications equipment rack with a termination panel with such a pivoting tray mounted to the rack.
Abstract:
A telecommunications connection cabinet includes a termination region, a fiber optic splitter mounting location, and a predetermined connector storage region positioned within an interior of a housing. The termination region includes telecommunications adapters, each telecommunications adapter being configured for coupling together two fiber optic connectors such that an optical interconnection is made between the two fiber optic connectors. The connector storage region is spaced from the termination region. The storage region defines openings allotted to removably mount connector storage housings at the connector storage region.
Abstract:
A fiber distribution device includes a swing frame chassis pivotally mounted to a support structure. At least a first optical splitter module is mounted to the swing frame chassis. Pigtails having connectorized ends are carried by the swing frame chassis and have portions that are routed generally vertically on the swing frame chassis. An optical termination field includes fiber optic adapters carried by the swing frame chassis. The fiber optic adapters are configured to receive the connectorized ends of the pigtails.
Abstract:
A fiber distribution hub includes a panel mounted within and pivotally movable relative to an enclosure. One or more connector holders are carried by the panel. The connector holders are provided at a connector storage location. The connector holders have a construction different than a functional fiber optic adapter.
Abstract:
A fiber optic telecommunications frame is provided including panels having front and rear termination locations, the panels positioned on left and right sides of the frame. The frame includes vertical access for the rear cables. The frame further includes left and right vertical cable guides for the front patch cables. The frame further includes cable storage spools for the patch cables. The frame includes a horizontal passage linking the left and right panels and the cable guides. A portion of the frame defines splice tray holders and a central passage from the splice tray holders to the rear sides of the left and right panels. From a front of each panel, access to a rear of the panel is provided by the hinged panels. Alternatively, the panels can form connector modules with front termination locations and rear connection locations for connecting to the rear cables. The modules can house couplers, such as splitters, combiners, and wave division multiplexers. The termination locations can be located on the same side of the frame as the splice tray holders, or on an opposite side. An enclosure of the frame included hinged or otherwise moveable panels to allow access to the terminations or the splice trays.