APPARATUS FOR GENERATING X-RAYS
    72.
    发明申请

    公开(公告)号:US20200154553A1

    公开(公告)日:2020-05-14

    申请号:US16612783

    申请日:2018-05-30

    Abstract: The present invention relates to an apparatus (10) for generating X-rays. It is described to produce (210) with at least one power supply (40) a voltage between a cathode (20) and an anode (30). The cathode is positioned relative to the anode, and the cathode and anode are operable such that electrons emitted from the cathode interact with the anode with energies corresponding to the voltage, and wherein the electrons interact with the anode at a focal spot to generate X-rays. The at least one power supply provides (220) the cathode with a cathode current. An electron detector (50) is positioned (230) relative to the anode, and a backscatter electron signal is measured (240) from the anode. The measured backscatter electron signal is provided (250) to a processing unit (60). The processing unit determines (260) a cathode current correction and/or a correction to the voltage between the cathode and the anode, wherein the determination comprises utilization of the measured backscatter electron signal and a correlation between anode surface roughness and backscatter electron emission. The cathode current correction and/or the correction to the voltage between the cathode and the anode is provided (270) to the at least one power supply.

    Magnetic support for journal bearing operation at low and zero speeds

    公开(公告)号:US10573484B2

    公开(公告)日:2020-02-25

    申请号:US15689326

    申请日:2017-08-29

    Abstract: A structure and method of operation of a journal bearing is disclosed that minimizes contact of the shaft with the sleeve during start up and slow down of rotation of the shaft relative to the sleeve, or vice versa. The bearing assembly includes a gravitational load reduction mechanism with magnets disposed on the sleeve and on the shaft in alignment with one another. The magnet(s) on the shaft interacts with the magnet(s) disposed on the sleeve to provide a force against the pressure of the shaft towards the sleeve generated by gravity on the rotating component. The magnets enable centering of the rotating component within the stationary component during low rotation and non-rotation. This prevents rubbing of the rotating journal bearing component surfaces, e.g., sleeve, against the stationary journal bearing component, e.g., shaft, during assembly, ramp-up, and coast-down when the journal bearing fluid provides minimal or no bearing centering capability.

    Thermionic emission device, focus head, X-ray tube and X-ray emitter

    公开(公告)号:US10546713B2

    公开(公告)日:2020-01-28

    申请号:US15679330

    申请日:2017-08-17

    Inventor: Anja Fritzler

    Abstract: A thermionic emission device includes an indirectly heatable main emitter with a main emission surface and a connectible heat emitter with a heat emission surface. The heat emission surface is disposed at a predefinable distance from the main emission surface. In the operating state, the main emitter is at a constant main potential and the heat emitter can be switched between at least two heating potentials which differ from one another and which differ from the main potential. Through the use of the thermionic emission device, the radiation load for a patient is reduced in the case of dose-modulated x-ray recordings.

    Creep resistant electron emitter material and fabrication method

    公开(公告)号:US10529526B2

    公开(公告)日:2020-01-07

    申请号:US16193336

    申请日:2018-11-16

    Abstract: In the present invention, a flat emitter is formed from emitter material preforms shaped as thin sheets of the emitter material. These sheets are subjected to various levels and/or amounts of mechanical working during their initial formation and are bonded to one another to create a preform having the desired thickness. The preform including the bonded sheets is subsequently worked to shape the preform into the desired configuration for the emitter. The working of the sheets of emitter material utilized to create the preform and the working of the preform to form the emitter provide a highly creep-resistant emitter that significantly improves the operation and useful life of the resulting emitter.

    Methods and apparatus for X-ray imaging from temporal measurements

    公开(公告)号:US10527562B2

    公开(公告)日:2020-01-07

    申请号:US15517122

    申请日:2015-10-29

    Abstract: For each X-ray path through a tissue, numerous trials are conducted. In each trial, X-ray photons are emitted along the path until a Geiger-mode avalanche photodiode “clicks”. A temporal average—i.e., the average amount of time elapsed before a “click” occurs—is calculated. This temporal average is, in turn, used to estimate a causal intensity of X-ray light that passes through the tissue along the path and reaches the diode. Based on the causal intensities for multiple paths, a computer generates computed tomography (CT) images or 2D digital radiographic images. The causal intensities used to create the images are estimated from temporal statistics, and not from conventional measurements of intensity at a pixel. X-ray dosage needed for imaging is dramatically reduced as follows: a “click” of the photodiode triggers negative feedback that causes the system to halt irradiation of the tissue along a path, until the next trial begins.

    Angled flat emitter for high power cathode with electrostatic emission control

    公开(公告)号:US10468222B2

    公开(公告)日:2019-11-05

    申请号:US15086257

    申请日:2016-03-31

    Inventor: Sergio Lemaitre

    Abstract: In the present invention, a computed tomography system, an X-ray tube used therein and a cathode assembly disposed in the X-ray tube, as well as an associated method of use, is provided that includes a gantry and the X-ray tube coupled to the gantry. The X-ray tube includes the cathode assembly having a pair of emitters for generating an electron beam, where the pair of emitters are disposed in the casing at angles with respect to one another. The X-ray tube further includes a focusing electrode for focusing the electron beam, an extraction electrode which electrostatically controls the intensity of the electron beam, a target for generating X-rays when impinged upon by the electron beam and a magnetic focusing assembly located between the cathode assembly and the target for focusing the electron beam towards the target.

    FIELD EMISSION DEVICE AND FIELD EMISSION METHOD

    公开(公告)号:US20190333730A1

    公开(公告)日:2019-10-31

    申请号:US16312565

    申请日:2017-03-16

    Abstract: An emitter (3) and a target (7) are arranged so as to face each other in a vacuum chamber (1), and a guard electrode (5) is provided at an outer circumferential side of an electron generating portion (31) of the emitter (3). The emitter (3) is supported movably in both end directions of the vacuum chamber (1) by the emitter supporting unit (4) having a movable body (40). The emitter supporting unit (4) is operated by an operating unit (6) connected to the emitter supporting unit (4). By operating the emitter supporting unit (4) by the operating unit (6), a distance between the electron generating portion (31) of the emitter (3) and the target (7) is changed, and a position of the emitter (3) is fixed at an arbitrary distance, then field emission is performed with the position of the emitter (3) fixed.

Patent Agency Ranking