Abstract:
An apparatus for inspecting a wafer includes a light source, a detecting part and a signal analyzing part. The light source emits a light onto the wafer, and the detecting part detects a radiation light emitted from the wafer by the light and generates a signal. The signal analyzing part analyzes the signal generated by the detecting part and determines whether a defect has been formed on the wafer.
Abstract:
A method of inspecting an inspection pattern using a statistical inference function is disclosed. The inference function is generated in relation to optical reference signal data and reference pattern characteristic data for a plurality of reference patterns formed by a unit process of interest on reference substrates.
Abstract:
In a method of detecting defects of patterns on a semiconductor substrate and an apparatus for performing the method information on positions of reference defects influencing an operation of a circuit including the patterns when the patterns are formed on the semiconductor substrate is acquired in advance. Preliminary defects of the patterns formed on the semiconductor substrate are detected. Positions of the preliminary defects of the patterns are compared with positions of the reference defects. The preliminary defects having the positions substantially the same as the positions of the reference defects are set to be defects of the patterns so that the actual defects are detected.
Abstract:
A method of monitoring a density profile of impurities, the method including presetting a monitoring position of a thin layer coated on a substrate, the density profile of impurities being monitored from the monitoring position in a direction of thickness of the thin layer, moving an exposer for exposing a local area of the thin layer to the monitoring position, exposing the local area of the thin layer along the direction of thickness of the thin layer, forming a shape profile of the exposed local area of the thin layer, and monitoring the density profile of impurities by determining a density of impurities in accordance with the shape profile, and an apparatus therefor. The impurity density profile may be monitored without destroying a substrate on which a thin layer is coated, and an amount of impurities used for forming the thin layer may be monitored and controlled in real-time.
Abstract:
A system and method of measuring a distance of semiconductor patterns is provided. The system includes a microscope and a control unit. The control unit calculates standard coordinates of standard points in view-fields that include spots, spot coordinates of spots with respect to standard points, real coordinates of spots from both of the standard coordinates and spot coordinates, and finally the distance between the two spots from the first and second real coordinates. Coordinates are determined using high magnification, in conjunction with pixel counting, allowing more precise distance measurements.
Abstract:
In a method of measuring a critical dimension for conductive structures or openings exposing conductive structures formed on a substrate, a corona ion charge is deposited on the conductive structures and/or an insulating layer having the openings in a measurement region of the substrate. The critical dimension of the conductive structures or the openings may be determined by comparing variations of a surface voltage caused by leakage current through the conductive structures with reference data to thereby improve reliability of the critical dimension measurement.
Abstract:
In an embodiment, a method of scanning a substrate, and a method and an apparatus for analyzing crystal characteristics are disclosed. A sequential scan on the scan areas using a first electron beam and a second electron beam are repeatedly performed. The electrons accumulated in the scan areas by the first electron beam are removed from the scan areas by the second electron beam. When a size of the scan area is substantially the same as a spot size of the first electron beam, adjacent scan areas partially overlap each other. When each of the scan areas is larger than a spot size of the first electron beam, the adjacent scan areas do not overlap each other. Images of the scan areas are generated using back-scattered electrons emitted from each of the scan areas by irradiating the first electron beam to analyze crystal characteristics of circuit patterns on the substrate.
Abstract:
A method of monitoring a density profile of impurities, the method including presetting a monitoring position of a thin layer coated on a substrate, the density profile of impurities being monitored from the monitoring position in a direction of thickness of the thin layer, moving an exposer for exposing a local area of the thin layer to the monitoring position, exposing the local area of the thin layer along the direction of thickness of the thin layer, forming a shape profile of the exposed local area of the thin layer, and monitoring the density profile of impurities by determining a density of impurities in accordance with the shape profile, and an apparatus therefor. The impurity density profile may be monitored without destroying a substrate on which a thin layer is coated, and an amount of impurities used for forming the thin layer may be monitored and controlled in real-time.
Abstract:
In a method, with improved utilization of memory, of inspecting a defect on an object, the object is divided into a plurality of inspection regions. A plurality of levels is determined according to the numbers of defects, which are expected before detecting the defects, on the inspection regions. The defects on a selected inspection region are detected. The level including a range, which corresponds to the number of defects detected on the selected inspection region, is assigned to the selected inspection region with reference to the number of defects detected on the selected inspection region. The steps of detecting defects and assigning levels are repeated with respect to remaining inspection regions.
Abstract:
A defect inspecting apparatus includes a first support unit supporting a standard sample having standard defects, a second support unit supporting a wafer having target defects, a light source irradiating an incident light to the standard sample or the wafer, a light receiving part collecting reflection light reflected from the standard sample and the wafer, a detection part detecting the standard defects and the target defects by using the reflection light, a comparing part comparing information obtained using the reflection light reflected from the standard sample with a predetermined standard information of the standard defects to confirm a reliability of a step for detecting the target defects and a determination portion determining whether the step is allowed to be performed or not.