Abstract:
A method of forming a semiconductor device is provided, comprising forming a plurality of hard masks on a substrate by patterning an insulating layer; forming a plurality of trenches in the substrate, each trench having trench walls disposed between two adjacent masks and extending vertically from a bottom portion to an upper portion; forming an insulating layer on the hard masks and the trench walls; forming a conductive layer on the insulating layer; etching the conductive layer to form conductive layer patterns to fill the bottom portions of the trenches; depositing a buffer layer on the conductive layer patterns and the trench walls; and filling the upper portions of the trenches with a capping layer.
Abstract:
A thin film transistor array panel includes an insulating substrate, a plurality of pixel electrodes arranged on the insulating substrate in rows and columns, a plurality of thin film transistors connected with the plurality of pixel electrodes, respectively, and a plurality of gate lines and a plurality of data lines connected with the plurality of thin film transistors. When one data line and one pixel electrode which are connected with a single thin film transistor are referred to as a connected data line and a connected pixel electrode, respectively, the plurality of thin film transistors are positioned on a same side of the connected data line in two adjacent rows, and on alternating sides of the connected data line in every other two adjacent rows. Two boundary lines of the connected pixel electrode are overlapped with the connected data line.
Abstract:
A thin film transistor (TFT) substrate is provided in which a sufficiently large contact area between conductive materials is provided in a contact portion and a method of fabricating the TFT substrate. The TFT substrate includes a gate interconnection line formed on an insulating substrate, a gate insulating layer covering the gate interconnection line, a semiconductor layer arranged on the gate insulating layer, a data interconnection line including a data line, a source electrode and a drain electrode formed on the semiconductor layer, a first passivation layer formed on the data interconnection line and exposing the drain electrode, a second passivation layer formed on the first passivation film and a pixel electrode electrically connected to the drain electrode. An outer sidewall of the second passivation layer is positioned inside an outer sidewall of the first passivation layer.
Abstract:
A method and apparatus for providing a position-based service is provided. The method includes detecting a current position; determining whether the current position is included in a previously set area-of-interest; and scanning for a wireless transceiver in response to a determination that the current position is included in the set area-of-interest.
Abstract:
The present invention provides a multiple layer that comprises two or more first inorganic material layers; and one or more second inorganic material layers that are positioned between the two first inorganic material layers and have the thickness of less than 5 nm, in which the first inorganic material layer is formed of one or more materials that are selected from silicon oxides, silicon carbide, silicon nitride, aluminum nitride and ITO, and the second inorganic material layer is formed of one or more materials that are selected from magnesium, calcium, aluminum, gallium, indium, zinc, tin, barium, and oxides and fluorides thereof, a multiple film that comprises the multiple layer, and an electronic device that comprises the multiple film.
Abstract:
The present invention provides a multilayered plastic substrate that simultaneously satisfies improvement in high temperature thermal deformation according to low linear expansion coefficient and excellent dimensional stability and excellent gas barrier property, and is capable of being used instead of a glass substrate that has brittleness and heavy disadvantages without a problem caused by a difference in linear expansion coefficient between layers, and a method for manufacturing the same.
Abstract:
A method of manufacturing a nitride semiconductor device is disclosed. The method includes forming a gallium nitride (GaN) epitaxial layer on a first support substrate, forming a second support substrate on the GaN epitaxial layer, forming a passivation layer on a surface of the other region except for the first support substrate, etching the first support substrate by using the passivation layer as a mask, and removing the passivation layer and thereby exposing the second support substrate and the GaN epitaxial layer.
Abstract:
The present invention relates to a nitride semiconductor substrate such as gallium nitride substrate and a method for manufacturing the same. The present invention forms a plurality of trenches on a lower surface of a base substrate that are configured to absorb or reduce stresses on the base substrate that become larger from a central portion of the base substrate towards a peripheral portion when growing a nitride semiconductor film. That is, the present invention forms the trenches on the lower surface of the base substrate such that pitches get smaller or widths or depths get larger from the central portion of the base substrate towards the peripheral portion.
Abstract:
The present invention provides a curing composition comprising maleimide and polyarylate having double bonds and a cured product prepared by using the same. The curing composition according to the present invention is used to provide a cured product having excellent heat-resistance and toughness.
Abstract:
There are provided an antenna using a buildup structure and a method of manufacturing the same. In the antenna, a tag chip is positioned within a dielectric and is connected to a radiator through a connection line or a via-hole, thereby being strong against external environments, decreasing a defective rate and enabling to be used for the special purpose of being positioned within a metal or liquid.