Abstract:
A compound represented by the formula [I]: or a pharmacologically acceptable salt or ester thereof, wherein Ring A represents a five-membered aromatic heterocyclic group or the like fused with a non-aromatic ring group, which may be substituted, Ring B represents a phenyl group or the like which may be substituted, X1 represents a single bond or the like, R1 and R2 each represent a C1-6 alkyl group or the like, m represents an integer of 0 to 3, and n represents an integer of 0 to 2, is effective as a therapeutic agent for a disease caused by Aβ.
Abstract:
A resonant circuit includes a substrate; a MEMS resonator including a fixed electrode and a movable electrode formed above the substrate and having a first terminal and a second terminal, the movable electrode having a movable portion opposing at least a part of the fixed electrode; a first input-output terminal connected to the first terminal connected to one of the fixed electrode and the movable electrode of the MEMS resonator; a second input-output terminal connected to the second terminal connected to an other one of the fixed electrode and the movable electrode of the MEMS resonator; a voltage applying unit supplying a potential to at least the first terminal to apply a bias voltage between the first and the second terminals; and a variable capacitance connected between the first terminal and the first input-output terminal to allow a capacitance value to be changed by a change in a potential difference between opposite ends of the variable capacitance.
Abstract:
An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.
Abstract:
A percutaneous absorption type patch adapted to be applied to a skin surface of a patient. The percutaneous absorption type patch comprises: a stratum-corneum release member constituted from a sheet-like first supporting substrate and a pressure-sensitive adhesive layer laminated on the first supporting member; a medicinal-components administration member constituted from a sheet-like second supporting substrate, a medicinal-components retention layer laminated on the second supporting substrate, and a protect layer laminated on the medicinal-components retention layer; and a sheet-like handling member interposed between the stratum-corneum release member and the medicinal-components administration member. An edge portion of the handling member is coupled to or integrated with both the first supporting substrate and the protect layer. Operations of peeling the stratum-corneum release member from the skin surface of the patient and peeling the protect layer from the medicinal-components retention layer are carried out at a time by pulling the handling member toward an operating direction.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
A resonant circuit includes a substrate; a MEMS resonator including a fixed electrode and a movable electrode formed above the substrate and having a first terminal and a second terminal, the movable electrode having a movable portion opposing at least a part of the fixed electrode; and a voltage applying unit applying a bias voltage to the MEMS resonator, the voltage applying unit including a voltage divider circuit that includes a compensation resistance formed of a same layer as that of the movable portion to allow a resistance value to be changed by a thickness of the layer and a reference resistance formed of a layer different from that of the movable portion and connected to the compensation resistance to output a junction potential between the compensation resistance and the reference resistance to at least one of the first and the second terminals of the MEMS resonator.
Abstract:
A plate member is made of a metal material lighter than stainless steel in a suspension for a head slider. This leads to a reduction in the weight of the suspension. The natural frequency of the suspension is thus raised. Moreover, the viscoelastic member is interposed between the front surface of the plate member and the back surface of the flexure. This structure allows either the plate member or the flexure to act as a base and the other to act as a constraining member. In other words, the plate member, the flexure and the viscoelastic member in combination act as a so-called vibration damper including constraining layers. The viscoelastic member serves to further suppress vibration of the plate member and the flexure.
Abstract:
A head slider is configured to fly a head above a recording medium with an air flow. The head slider includes a recessed portion in a surface facing the recording medium. The recessed portion is formed in a shape that does not form a region in which a shear stress due to the air flow is concentrated.
Abstract:
A method is for manufacturing a microeletromechanical system resonator having a semiconductor device and a microelectromechanical system structure unit formed on a substrate. The method includes: forming a lower electrode of an oxide-nitride-oxide capacitor unit included in the semiconductor device using a first silicon layer; forming, using a second silicon layer, a substructure of the microelectromechanical system structure unit and an upper electrode of the oxide-nitride-oxide capacitor unit included in the semiconductor device; and forming, using a third silicon layer, a superstructure of the microelectromechanical system structure unit and a gate electrode of a complementary metal oxide semiconductor circuit unit included in the semiconductor device.
Abstract:
A disk apparatus includes a ramp which holds a tip end of an arm at a position away from a disk, and a slit shroud having an airflow control plate. A side surface of the airflow control plate is opposed to a side surface of the disk, the airflow control plate spreads to a position where the airflow control plate is superposed on the tip end of the arm held by the ramp. The airflow control plate has the same thickness as that of the disk, and is flush with the disk 12.