Abstract:
The invention belongs to the field of recycling of resources, in particular to a method for waste rare earth luminescent material by dual hydrochloric acid. First hydrochloric acid was used to dissolve the red phosphor powder (Y2O3:Eu) priority, and yttrium-rich rare earth chloride solution and residue were obtained after filtered. Residue's major components were green and blue phosphor powder, and the removal of Ca2+ in filtrate was conducted by using Na2SO4, and CaSO4 precipitation separation was conducted to get rich rare earth chloride solution, europium and yttrium. Residue was mixed with alkali to perform alkaline fusion at high temperature to decompose green and blue powder, then sodium aluminate, magnesium, barium and rare earth oxides were obtained. Alkaline fusion products were washed with water, and filtered, and then sodium aluminate solution and residues containing rare earth oxides were obtained.
Abstract translation:本发明属于资源循环利用领域,特别涉及一种双重盐酸废稀土发光材料的制造方法。 使用第一盐酸溶解红色荧光体粉末(Y2O3:Eu),过滤后得到富钇稀土氯化物溶液和残留物。 残渣的主要成分为绿色和蓝色荧光粉,用Na 2 SO 4除去滤液中的Ca2 +,进行CaSO4沉淀分离,得到富稀土氯化物溶液,铕和钇。 残留物与碱混合,在高温下进行碱性熔融分解绿色和蓝色粉末,然后获得铝酸钠,镁,钡和稀土氧化物。 碱性熔融产物用水洗涤,过滤,然后得到铝酸钠溶液和含有稀土氧化物的残余物。
Abstract:
The invention belongs to the field of recycling of resources, in particular to a method for waste rare earth luminescent material by dual hydrochloric acid. First hydrochloric acid was used to dissolve the red phosphor powder (Y2O3:Eu) priority, and yttrium-rich rare earth chloride solution and residue were obtained after filtered. Residue's major components were green and blue phosphor powder, and the removal of Ca2+ in filtrate was conducted by using Na2SO4, and CaSO4 precipitation separation was conducted to get rich rare earth chloride solution, europium and yttrium. Residue was mixed with alkali to perform alkaline fusion at high temperature to decompose green and blue powder, then sodium aluminate, magnesium, barium and rare earth oxides were obtained. Alkaline fusion products were washed with water, and filtered, and then sodium aluminate solution and residues containing rare earth oxides were obtained.
Abstract translation:本发明属于资源循环利用领域,特别涉及一种双重盐酸废稀土发光材料的制造方法。 使用第一盐酸溶解红色荧光体粉末(Y2O3:Eu),过滤后得到富钇稀土氯化物溶液和残留物。 残渣的主要成分为绿色和蓝色荧光粉,用Na 2 SO 4除去滤液中的Ca2 +,进行CaSO4沉淀分离,得到富稀土氯化物溶液,铕和钇。 残留物与碱混合,在高温下进行碱性熔融分解绿色和蓝色粉末,然后获得铝酸钠,镁,钡和稀土氧化物。 碱性熔融产物用水洗涤,过滤,然后得到铝酸钠溶液和含有稀土氧化物的残余物。
Abstract:
A measuring whispering-gallery-mode resonator, comprising: a dielectric resonating body with a rotation axis; a superconducting sample under test, which is mounted to the resonating body; a coupling unit for coupling a measuring waveguide with the resonating body, wherein one side of the resonating body connected with the coupling unit is provided with a first endplate, wherein m coupling holes penetrate through the first endplate, and centers of the m coupling holes are arranged to be evenly spaced along a circle whose center is on the rotation axis; the coupling unit has a feeder line which is a coaxial waveguide, wherein an axis of the coaxial waveguide coincides with the rotation axis, and one end surface of the coaxial waveguide, which is perpendicular to the rotation axis, abuts to the first endplate; and the axial index of operated whispering gallery mode in the resonator is an integer multiple of the number m of the coupling holes.
Abstract:
A method analyzes global average grayscale change of tundish ink tracing experiment. The method includes the following steps: building a water model based on a prototype size and production parameters of a tundish; carrying out experiments by using the water model to obtain a video file of the ink tracing; processing the video file and extracting a characteristic curve of a global average grayscale changing with the time; analyzing the characteristic curve, and extracting a global peak grayscale time, a global tracer residual volume and a global emptying time as indicators for evaluating a tundish structure and flow characteristics of the tundish structure.
Abstract:
Disclosed are an integrated method and an integrated system for resource recovery of source-separated urine. The integrated method for resource recovery of the source-separated urine includes: mixing the source-separated urine with an alkali metal peroxysulphate to obtain a mixture, and subjecting the mixture to evaporation-concentration by heating to obtain condensed water and a liquid compound fertilizer, where the liquid compound fertilizer includes urea, a phosphorus salt, and a potassium salt.
Abstract:
The present invention belongs to the technical field of refractory materials, and disclosed are a high-purity compact calcium hexa-aluminate-based refractory material, a preparation method therefor, and a working lining using the same. The mixing ratio is adjusted according to the chemical composition of the final product to contain raw materials containing CaO, Al2O3 and ZrO2, the mixing ratio enabling the ratio of the chemical composition CaO:Al2O3:ZrO2 calculated according to parts by mass to be 45.5-95.5%:2.0-8.4%:0-50%; and the chemical composition are placed into a high-temperature furnace and a mold for hot-pressing is carried out, the maximum temperature is 1550-1800° C., and the hot-pressing strength is 0.5-30 MPa. In the present invention, when no sintering agent is added, a hot-pressing sintering process is employed according to a proportion to obtain a high-purity compact calcium hexa-aluminate-based refractory material, and the refractory material has excellent resistance to molten steel erosion and thermal shock stability, and can be widely applied in metallurgy, building materials and petrochemical industries as well as other industries. The preparation method is scientific and reasonable, product purity is high, and the prepared refractory material product can increase a device operation period; in addition, production costs are reduced, and energy-saving and emission-reducing effects are achieved.
Abstract:
Disclosed in the present invention are a corrosion-resistant refractory material, preparation method therefor, and the use thereof. In the corrosion-resistant refractory material, a material phase of the refractory material comprises corundum and one or more material phases selected from CA6, C2M2A14, CM2A8, and ZrO2. The refractory material has low a low amount of a high-temperature liquid phase, a uniform pore structure, and good thermal shock stability; can be widely used in steel-making production lines and also in the refractory linings of rotary kilns, and has good erosion resistance and low thermal conductivity, and the performance thereof is obviously superior to that of many existing refractory materials such as silico carbide-mullite bricks and magnesia-alumina spinel bricks.
Abstract:
A low-cost four-element system cementitious material, a preparation method and an application thereof are provided by the present disclosure, and the cementitious material is used in the fields of mine cementing filling and building materials. The four-element system cementitious material includes the following raw materials in percentage by mass: 20-60% of water-quenched blast furnace slag, 10-40% of waste incineration bottom ash, 20% of pretreated waste incineration fly ash and the balance of desulfurization gypsum. The low-cost four-element system cementitious material is used to replace cement to prepare mine cementing filling materials, and is also used to prepare concrete materials for construction industry.
Abstract:
In the field of photoelectric devices, a visible light detector is provided with high-photoresponse based on a TiO2/MoS2 heterojunction and a preparation method thereof. The detector, based on a back-gated field-effect transistor based on MoS2, includes a MoS2 channel, a TiO2 modification layer, a SiO2 dielectric layer, Au source/drain electrodes and a Si gate electrode, The TiO2 modification layer is modified on the surface of the MoS2 channel. By employing micromechanical exfoliation and site-specific transfer of electrodes, the method is intended to prepare a detector by constructing a back-gated few-layer field-effect transistor based on MoS2, depositing Ti on the channel surface, and natural oxidation.
Abstract:
The present invention discloses a high-entropy soft magnetic alloy with 900 K high-temperature resistance, comprising Fe, Co, Ni, Si and Al, and the atomic percent of the alloy composition is expressed as FexCoyNizSimAln, wherein x=40%-80%, y=20%-60%, z=0-30%, m=0-20%, n=0-20%, and x+y+z+m+n=100%; the atomic percent of other doping elements is p=0-5%, and 0.5≤m/n≤3; the performance indexes of the material include: at room temperature, saturation magnetization Ms=90-150 emu/g, and coercive force Hc=0.1-15 Oe; and at 900 K, saturation magnetization Ms=70-130 emu/g, and coercive force Hc=0.1-25 Oe. The high-entropy soft magnetic alloy with 900 K high-temperature resistance of the present invention realizes the continuously diffuse distribution of nano-scale precipitates in the matrix structure by comprehensively regulating the microstructure configuration of the multi-principal element alloy, thus improving the soft magnetic properties of the alloy to a certain extent, and the processing route is simple and reliable, with high repeatability.