Abstract:
A mounting apparatus fixing an expansion card includes an expansion slot, two locking members connected to opposite ends of the expansion slot, for clamping the expansion card, and two latching members pivotably mounted to opposite ends of the expansion card, respectively. A latching portion protrudes from each of the latching members, for latching the corresponding locking member.
Abstract:
Disclosed is a process for producing dimethyl ether from methanol, which is characterized in that the absorbing liquid used in said absorbing column is the bottom liquid of DME-fractionating column and/or bottom waste water of the methanol-recovering column. Said process can significantly reduce energy consumption of the apparatus.
Abstract:
High-throughput detection for the interesting base or the mutation site in the nucleic acid sample can be achieved by means of the linear test probe pairs P1 and P2. The test probe pairs P1 and P2 respectively comprise either of the flanking complementary sequences which are adjacent to the interesting base or the mutation site in the nucleic acid sample. The invention can be applied to the re-sequencing the target nucleic acid sequence, the detection and analysis for the mutation, insertion, or deletion sites of a known nucleic acid sequence, and the genotyping of the pathogenic microorganism.
Abstract:
A Talbot-illuminated imaging system for focal plane tuning, the device comprising a Talbot element, a tunable illumination source, a scanning mechanism, a light detector, and a processor. The element generate san array of focused light spots at a focal plane. The tunable illumination source shifts the focal plane to a plane of interest by adjusting a wavelength of light incident the Talbot element. The scanning mechanism scans an object across an array of focused light spots in a scanning direction. The light detector determines time-varying light data associated with the array of focused light spots as the object scans across the array of light spots. The processor constructs an image of the object based on the time-varying data.
Abstract:
An error amplifier includes a first amplification circuit with a reference signal input and a feedback signal input representing the amplitude of a load voltage of a switched mode power supply. The error amplifier includes a difference amplifier providing a difference signal representing a difference between the reference signal and the feedback signal, provided for determining the duty cycle of a switching signal in the switched mode power supply. The first amplification circuit further includes a control circuit providing a control signal generated as a function of the difference between the reference signal and the feedback signal.The error amplifier also includes a second amplification circuit, included in a compensation circuit. The second amplification circuit receives the control signal, and the operating current of the second amplification circuit is adjusted by an amount indicated by the control signal.
Abstract:
In some embodiments, a nanocrystal described herein comprises a semiconductor material MX, wherein M is a group II or a group III element and X is a group V or a group VI element to provide a II/VI compound or a III/V compound, the nanocrystal having lateral dimensions and a vertical dimension having the shortest axis, wherein surfaces of the nanocrystal normal or substantially normal to the axis of the vertical dimension comprise a layer of M ions passivated by a counter ion chemical species.
Abstract:
A central processing unit (CPU) start-up circuit for controlling a CPU of a portable electronic device includes a power management unit (PMU) connected to the CPU, an awaking circuit connected to the CPU, and a main power supply connected to the CPU, the PMU and the awaking circuit. The main power supply provides working electric power to the CPU, the PMU detects the status of the main power supply and generates a status signal (SS) according to the detecting result, the awaking circuit detects the status of the main power supply and generates a waking signal (WS) according to the detecting result, and the SS and the WS are both transmitted to the CPU to cooperatively control the CPU to be switched on and switched off.
Abstract:
Processes for constructing improved networks, such as Bayesian networks, of putative biomolecular pathways, that can e used to identify candidate biomolecular targets for validation as drug development targets, and the like; networks prepared thereby, use of the networks to predict the effect of biomolecule perturbations on cell phenotypes, and microprocessors and data processing systems programmed to automate the processes and software having instructions for performing the processes.
Abstract:
High-throughput detection for the interesting base or the mutation site in the nucleic acid sample can be achieved by the linear test probe pairs P1 and P2. The test probe pairs P1 and P2 respectively comprise either of the flanking complementary sequences which are adjacent to the interesting base or the mutation site in the nucleic acid sample. When the test probe pairs P1, P2 are annealed and hybridized to the nucleic acid sample, a gap will be generated at the interesting base or the mutation site position between the probe pairs and the sample. Divide the annealed hybrid sample into four equal reaction systems to which add dATP, dTTP, dCTP, dGTP, respectively. The test probe pairs P1 and P2 will be ligated into one single probe when adding the complementary nucleotide system under the DNA polymerase or ligase. After purified and amplified, the generated single probes are hybridized to the corresponding area in a common oligonucleotide microarray. The generated single probe will give a signal in the hybrid area, and therefore detect and analyze the hybrid signal to determine the base type or the mutation genotype at the detection position. The invention can be applied to the re-sequencing the target nucleic acid sequence, the detection and analysis for the mutation, insertion, or deletion sites of a known nucleic acid sequence, and the genotyping of the pathogenic microorganism.