Abstract:
Disclosed herein is a method of fabricating a stent assembly comprising radially expanding a polymeric tube to an optimal degree of radial expansion; fabricating a stent from the expanded polymeric tube; and crimping the stent onto a catheter assembly, wherein the temperature of the stent during crimping is an optimal crimping temperature, wherein the optimal degree of radial expansion and the optimal crimping temperature correspond to an optimal fracture toughness exhibited by the crimped stent upon its deployment as a function of degree of radial expansion and crimping temperature.
Abstract:
The present invention relates to a composition of a first single enantiomer homopolymer and a separate stereocomplex formed of a second single enantiomer homopolymer and it mirror image enantiomer, wherein the first and second single enantiomer homopolymers can be the same or different.
Abstract:
A method of crimping a stent to a support element is disclosed, the method comprising: positioning a polymeric stent around a support element; heating the stent, wherein the heated stent is above ambient temperature; and allowing the heated stent to radially contract onto the support element, wherein the heated stent radially contracts at least partially due to heating the stent.
Abstract:
The invention provides a method for fabricating an implantable medical device to increase biocompatibility of the device, the method comprising: heat setting a polymer construct, wherein the polymer construct is at a temperature range of from about Tg to about 0.6(Tm−Tg)+Tg such that the set polymer construct comprises a crystalline structure having crystals at a size less than about 2 microns; and fabricating an implantable medical device from the heat set polymer construct.
Abstract:
The invention provides a method of manufacturing an implantable medical device, the method comprising: (a) disposing a polymer fluid comprising a solvent and a matrix polymer into a forming apparatus for forming a polymeric part; (b) cooling the formed polymeric part upon removal from the apparatus, the cooled polymeric part comprises the polymer and a substantial portion of the solvent from the polymer fluid; and (c) fabricating an implantable medical device from the cooled polymeric part.
Abstract:
Medical assemblies with a releasable connection and methods of constructing such medical assemblies are disclosed. The medical assemblies generally comprise a stent, a catheter assembly having catheter body a balloon, and a releasable connection between the stent and the catheter assembly that releases the stent from the catheter assembly in response to enlargement of the balloon or when the balloon has been enlarged to an expanded configuration.
Abstract:
Disclosed is a method of treating a bodily lumen with a stent, the method comprising: disposing a stent within a bodily lumen, the stent comprising a plurality of deformable struts that are substantially circumferentially aligned and are configured to selectively deform in a circumferential direction in localized regions in the struts upon application of an outward radial force; and expanding the stent by applying the outward radial force, wherein the outward radial force causes selective deformation of the deformable struts in a localized region in the struts.
Abstract:
A method of crimping a stent on a balloon of a catheter assembly is provided. A polymeric stent is disposed over a balloon in an inflated configuration. The stent is crimped over the inflated balloon to a reduced crimped configuration so that the stent is secured onto the balloon. The balloon wall membrane is wedged or pinched between the strut elements of the stent for increasing the retention of the stent on the balloon.