Abstract:
The present disclosure discloses a self-capacitive touch display panel and a display device, comprising: a substrate, and a plurality of top-emitting type organic electroluminescent structures disposed on the substrate and sharing one cathode. The self-capacitive touch display panel further comprises: a plurality of self-capacitive touch electrodes disposed at the same layer, positioned above the cathode and insulated with the cathode; a plurality of touch leads electrically connected with the plurality of self-capacitive touch electrodes; and a touch detection circuit, configured to determine a touch position by detecting the change of the capacitance values of the self-capacitive touch electrodes during a touch phase. The self-capacitive touch electrodes are connected with the touch detection circuit by way of the respective touch leads. The touch display panel reduces its thickness, guarantees a whole layer cathode structure of the organic electroluminescent structures and effectively guarantees the display quality.
Abstract:
A liquid crystal display panel, in which pixel units are provided on the liquid crystal display panel, each pixel unit includes sub-pixel units displaying different colors, at a position of the apposed substrate or the array substrate corresponding to the sub-pixel unit of at least one color in each pixel unit, a monochromatic quantum dot layer is disposed. This liquid crystal display panel has increased color gamut of the liquid crystal display panel, enhanced color saturation, increased display quality, and increased life of quantum dots. A display device and a process for patterning the monochromatic quantum dot layer are also provided.
Abstract:
A pixel array, a display driving method, a display driving device and a display device are described. The pixel array comprises a plurality of columns of subpixel groups. Each column of subpixel group comprises M×N subpixels, where N is the number of colors of subpixels, and M is an integer equal or greater than 3. Directions in which subpixels of the subpixel groups in odd columns and subpixels of the subpixel groups in even columns are twisted respectively being opposite in a column direction. The pixel array is suitable for application of Pentile technologies under 2D/3D display mode.
Abstract:
The present invention discloses a display device and a driving method thereof. The display device comprises a display panel, a grating, a voltage generating unit, a touch sensing unit and a control unit. The grating comprises a first electrode and a second electrode having a p plurality of electrode blocks. The voltage generating unit provides first and second voltages to the first and second electrodes, respectively. The control unit controls the values of the first, second voltages such that the grating is transparent during the 2D display phase and functions well during the 3D display phase. During a touch phase, the electrode blocks serve as touch electrodes so as to provide a touch function together with the touch sensing unit. Since the second electrode is used during both the display phase and the touch phase, the display device has a reduced thickness, lower costs and enhanced transmittance.
Abstract:
A touch display panel and a method for controlling the same and a touch display device are provided. The touch display panel includes at least one first electrode arranged in a same layer with the touch sensing electrode and insulated from the touch sensing electrode. The first electrode is electrically connected to a first signal input terminal in a display phase to discharge electrostatic charges in the first electrode, and is electrically connected to a second signal input terminal in a touch display phase to keep the first electrode in a high impedance state in the touch phase.
Abstract:
In the pixel circuit, at a charging stage, a charging unit controls a first end of a storage capacitor to be at a potential of an input signal from a second level signal input end, controls a second end of the storage capacitor to be at a potential equal to a difference between a potential of an input signal from the first level signal input end and a threshold voltage of a driving TFT; at a compensation jumping stage, a compensation jumping unit controls the first end to be at a data voltage, and enable a voltage at the second end to jump to a sum of the data voltage and a difference between the potential of the input signal from the first level signal input end and the threshold voltage of the driving TFT, to enable a light-emitting unit to emit light using the data voltage.
Abstract:
An array substrate, a method for fabricating the same and a display device are disclosed. The substrate comprises: a gate electrode (11) and a gate line (12) disposed on a base substrate (00), an active layer (20) disposed on the film layer comprising the gate electrode (11) and the gate line (12). The substrate further comprises: a pixel electrode (40) disposed on the same layer as and electrically insulated from the active layer (20); a drain electrode (31), a source electrode (32) and a date line (33) disposed on the film layer comprising the active layer (20) and the pixel electrode (40), wherein the drain electrode (31) is electrically connected to the pixel electrode (40) directly; a common electrode layer (50) and a plurality of wires (60) disposed on the film layer having the drain electrode (31), the source electrode (32) and the date line (33) and electrically insulated from each of the drain electrode (31), the source electrode (32), the date line (33) and the pixel electrode (40); wherein the plurality of wires (60) is disposed on a different layer from the common electrode layer (50), the common electrode layer (50) comprises a plurality of self-capacitive electrodes (51) disposed in a same layer and insulated from each other, and each of the wires (60) is electrically connected to a corresponding self-capacitive electrode (51) through a via hole (100). The array substrate solves the problem of having a relatively large touch blind area in self-capacitive touch control structures.
Abstract:
Disclosed are a capacitive touch structure, an in-cell touch panel, a display device and a scanning method thereof. The capacitive touch structure includes: a plurality of self-capacitance electrodes (10) disposed in a same layer and located in at least two regions contained in the layer surface where self-capacitance electrodes (10) are located; region electrodes (20) located in each of the regions and disposed in the same layer with the self-capacitance electrodes (10); first wires connected with the self-capacitance electrodes (10), wherein there is at least a plurality of first wires (41) that satisfy the following conditions: one of the first wire (41) is connected with at least two of the self-capacitance electrodes (10) located in different regions respectively; second wires connected with the region electrodes (20), wherein the region electrodes in respective regions are electrically connected with different second wires; and a touch sensing chip connected with the first wires (41) and the second wires.
Abstract:
Disclosed is a touch display panel, a touch display device and a touch detection method. The touch display panel includes receiving electrodes and transmitting electrodes, and further includes a plurality of transparent electrodes and a touch detecting circuit. The transparent electrodes are disposed on a substrate at a touching side of the display panel and one-to-one connected and correspond to the transmitting electrodes. The touch detecting circuit is connected to individual transparent electrodes, and includes a voltage switch unit, a storage unit and a processing unit. The processing unit is configured for measuring actual display data and actual touch data of each touch node, finding corresponding initial touch data, and removing influence caused by the corresponding initial touch data from the actual touch data to obtain an actual output.
Abstract:
The present disclosure provides an array substrate and a display device. The array substrate includes a plurality of data lines, a plurality of gate lines and a plurality of sub-pixel units defined by the plurality of data lines and the plurality of gate lines crossed with the plurality of data lines. Each gate line is connected with a row of sub-pixel units in an extension direction of the gate line. Each data line is connected with sub-pixel units which are arranged alternately at different sides of the each data line. Sub-pixel units connected with a same data line have an identical color