Abstract:
Successive interference cancellation is performed with improved computational efficiency while offering performance approaching that of full CRC-based successive interference cancellation. In a “blind” interference cancellation technique, reconstructed streams are used for interference cancellation without regard to whether the reconstructed streams were properly decoded. In a “semi-blind” interference cancellation technique, decoder outputs from linear equalization can be used instead of decoder outputs from successive interference cancellation in those cases where linear equalization produces accurate decoding but successive interference cancellation does not.
Abstract:
Techniques for performing spectral shaping to achieve a desired peak-to-average ratio (PAR) are described. Spectral shaping may be selectively performed for a single-carrier frequency division multiplexing (SC-FDM) signal based on one or more criteria, e.g., in transmit power limited conditions and/or if a modulation scheme with lower PAR is unavailable. At least one parameter of a window function or spectral shaping filter may also be adjusted based on at least one characteristic of the SC-FDM signal. For example, the roll-off of the spectral shaping filter may be adjusted based on the modulation scheme and/or the number of subcarriers used for the SC-FDM signal. A transmitter may perform spectral shaping on modulation symbols, if enabled, to obtain spectrally shaped symbols. Spectral shaping may be performed in the frequency domain either within an allocated bandwidth or with bandwidth expansion. The SC-FDM signal may be generated based on the spectrally shaped symbols.
Abstract:
This invention is to provide an apparatus and method for performing fast distributed sample acquisition (DSA) which is applicable to DS/CDMA system with a long-period PN sequence. The apparatus includes a spreader which generates a data signal by spreading an incoming data stream over a predetermined range of spectrum according to a locally generated first main sequence and samples the state sample of said main sequence, a sample spreader which makes the state sample output from a spreader corresponding to one of binary orthogonal symbols having a predetermined length and outputs a first state signal by spreading the symbol according to a locally generated first subsequence, a sample despreader which reconstructs the transmitted binary orthogonal symbols by despreading the first state signal obtained from the sample spreader according to a locally generated second subsequence and therefrom detects the state sample of the first main sequence, and a despreader which compares the state sample obtained from the sample despreader with a locally generated state sample and makes correction on the SRG installed within itself as many as a predetermined number of times, generates a second main sequence having new states, and reconstructs the incoming data stream by despreading the data signal obtained from the spreader according to the second main sequence.
Abstract:
Facilitating frequency hopping for single carrier, frequency division multiple access (SC-FDMA) transmission is described herein. By way of example, user data transmitted within a transmission allocation unit can be frequency shifted with respect to time based slots of the allocation unit. As a result, frequency hopping can be accomplished while preserving single carrier constraints and a low peak to average power ratio (PAPR). Furthermore, various frequency shifted mechanisms are disclosed to accomplish preservation of single carrier restraints. For example, a scheduler can select between cyclic frequency shifting, transposed frequency shifting, and multiplexing of frequency selective scheduled and frequency hopped data based on an audit of scheduled data for the transmission allocation unit. As a result, the reduction in interference achieved through frequency hopping can be combined with the low PAPR for various data allocation configurations.
Abstract:
A processing method includes processing a wafer based on initial data, measuring errors for each of the plurality of areas, calculating an error similarity of at least some of the plurality of areas as a function of a separation distance between each pair of some of the areas, selecting a first area and a plurality of second areas adjacent to the first area, calculating weight values for the second areas based on the error similarities between each pair of second areas and the error similarities between the first area and each second area, calculating an estimated error of the first area based on the measured errors of the second areas and the weight values for the second areas, and generating estimated data based on the estimated errors for each of the plurality of areas.
Abstract:
Techniques for transmitting information using cyclically shifted sequences are described. In one design, first and second sequences may be generated by cyclically shifting a base sequence by first and second amounts, respectively. The base sequence may be a CAZAC sequence, a PN sequence, or some other sequence having good correlation properties. The cyclic shifts for the first and second sequences may be determined based on a hopping pattern. A first modulated sequence may be generated based on the first sequence and a first modulation symbol and may be sent in a first time interval. A second modulated sequence may be generated based on the second sequence and a second modulation symbol and may be sent in a second time interval. Each modulated sequence may be sent on K consecutive subcarriers using localized frequency division multiplexing (LFDM).
Abstract:
The present invention relates to a method and an apparatus for transmitting and receiving data in a relay communication system. The method and the apparatus allocate resources by dividing backhaul link resources into plural partitions, and then transmit and receive data. The data transmission method of the invention comprises the steps of: allocating a certain number of initial OFDM symbol transmission periods in a sub-frame of a downlink channel to a control channel that transfers the control information of the terminal, wherein data is transmitted from a base station to a relay or terminal through the downlink channel; dividing the resource blocks excluded from the control channel of the sub-frame into at least two partitions based on frequency domain; determining whether or not each divided partition is allocated to the relay or terminal as resources; and allocating data to the determined partition in order to transmit the partition to the relay or terminal through the downlink channel, wherein the partition determined for the allocation of resources to the relay is allocated to the relay through time division multiplexing (TDM) or frequency division multiplexing of both control and data channels of the relay.
Abstract:
Systems and methodologies are described that facilitate efficient cell acquisition in a wireless communication system. In one aspect, a reference signal for use in cell acquisition can be constructed in a bandwidth-agnostic manner such that it contains a common central portion in a predetermined frequency band that is independent of a bandwidth utilized by an associated wireless communication system. The central portion can be constructed as a two-dimensional block in time and frequency that spans a default cell search bandwidth, a predetermined bandwidth specified by synchronization codes or other signals, or another suitable bandwidth. A reference signal can then be constructed form the central portion by tiling or expanding the central portion such that it spans the entire system bandwidth.
Abstract:
A method of operating a relay station in a wireless communication system is provided. The method comprises the steps of determining a relay mode and transmitting a signal, received from a source station, to a destination station in the determined relay mode, wherein the relay mode is determined based on at least one of requirements for quality of service (QoS) of traffic, the number of times in which attempts are made to transmit a packet, and an amount of packets stored in a buffer of the relay station.
Abstract:
Disclosed are an apparatus and method for determining a frame structure for reducing interference between users using the same frequency band in a communication system using a cognitive radio, the method including, collecting channel status information related to a primary user with a priority to occupancy of a predetermined frequency band, executing spectrum sensing for the frequency band to check whether the primary user's traffic exists, deciding a length of a data frame to be transmitted in consideration of interference to the primary user based upon the collected channel status information if a channel in which the primary user's traffic is not present is sensed through the spectrum sensing, constructing a data frame based upon the decided frame length to transmit via the sensed channel, and re-executing the spectrum sensing for the channel, if data to be additionally transmitted exists, and rechecking whether the primary user's traffic is present.