ION EXCHANGED GLASS WITH HIGH RESISTANCE TO SHARP CONTACT FAILURE AND ARTICLES MADE THEREFROM

    公开(公告)号:US20210024404A1

    公开(公告)日:2021-01-28

    申请号:US17011499

    申请日:2020-09-03

    Abstract: An article comprising an ion-exchanged glass material that prevents sharp contact flaws from entering a central region of the material that is under central tension and thus causing failure of the material. The glass material may be a glass or glass ceramic having a surface layer under compression. In some embodiments, the depth of the compressive layer is greater than about 75 um. The greater depth of layer prevents flaws from penetrating the compressive layer to the region under tension.

    Ion-exchangeable glass with low coefficient of thermal expansion

    公开(公告)号:US10899653B2

    公开(公告)日:2021-01-26

    申请号:US15863054

    申请日:2018-01-05

    Abstract: Provided herein is a glass composition comprising: about 72 mol % to about 77 mol % SiO2; about 8 mol % to about 12 mol % Al2O3; about 10 mol % to about 14 mol % of one or more alkali oxide R2O, wherein R2O is Li2O, Na2O, K2O, Rb2O, or Cs2O; one or more divalent oxide RO, wherein RO is MgO, CaO, SrO, BaO, or ZnO; and P2O5, wherein the ratio of mol % RO/(mol % R2O+mol % RO) is at least about 0.2. The glass composition has one or more of the following characteristics: (i) a low temperature (form 25° C. to 300° C.) coefficient thermal expansion (LTCTE) of less than 7.5 ppm/° C.; (ii) high temperature coefficient thermal expansion (HTCTE) of less than 18 ppm/° C.; (iii) liquidus viscosity of at least 200,000 poise; (iv) glass temperature of at least 1100° C. at 200,000 poise or at least 1200° C. at 35,000 poise; and (v) a fictive temperature Tf less than about 795° C.

    SCRATCH AND DAMAGE RESISTANT LAMINATED GLASS ARTICLES

    公开(公告)号:US20200307164A1

    公开(公告)日:2020-10-01

    申请号:US16823939

    申请日:2020-03-19

    Abstract: Scratch and damage resistant laminated glass articles are disclosed. According to one aspect, a laminated glass article may include a glass core layer formed from core glass composition and includes a core glass elastic modulus EC and at least one glass clad layer fused directly to the glass core layer. The at least one glass clad layer may be formed from an ion exchangeable clad glass composition different than the core glass composition and includes a clad glass elastic modulus ECL. The laminated glass article may have a total thickness T and the at least one glass clad layer may have a thickness TCL that is greater than or equal to 30% of the total thickness T. EC may be at least 5% greater than ECL.

    Fusion-formable glass-based articles including a metal oxide concentration gradient

    公开(公告)号:US10787387B2

    公开(公告)日:2020-09-29

    申请号:US15376057

    申请日:2016-12-12

    Abstract: A glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension of less than about 71.5/√(t) (MPa). In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a point between the first surface and the second surface and increases from the point to the second surface. The concentration of the metal oxide may be about 0.05 mol % or greater or about 0.5 mol % or greater throughout the thickness. Methods for forming such glass-based articles are also disclosed.

Patent Agency Ranking