Abstract:
A fluid control device includes a piezoelectric actuator and a deformable substrate. The piezoelectric actuator includes a piezoelectric element and a vibration plate. The piezoelectric element is attached on a first surface of the vibration plate. The piezoelectric element is subjected to deformation in response to an applied voltage. The vibration plate is subjected to a curvy vibration in response to the deformation of the piezoelectric element. A bulge is formed on a second surface of the vibration plate. The deformable substrate includes a flexible plate and a communication plate, which are stacked on each other. Consequently, a synchronously-deformed structure is defined by the flexible plate and the communication plate collaboratively, and there is a specified depth maintained between the flexible plate and the bulge of the vibration plate. The flexible plate includes a movable part corresponding to the bulge of the vibration plate.
Abstract:
A piezoelectric actuator includes a suspension plate, a piezoelectric ceramic plate, an outer frame and a bracket. The suspension plate is permitted to undergo a curvy vibration from a middle portion to a periphery portion. The piezoelectric ceramic plate is attached on the suspension plate. When a voltage is applied to the piezoelectric ceramic plate, the suspension plate is driven to undergo the curvy vibration. The outer frame is arranged around the suspension plate. The bracket is connected between the suspension plate and the outer frame for elastically supporting the suspension plate, and includes an intermediate part formed in a vacant space between the suspension plate and the outer frame and in parallel with the outer frame and the suspension plate, a first connecting part arranged between the intermediate part and the suspension plate, and a second connecting part arranged between the intermediate part and the outer frame.
Abstract:
A miniature fluid control device includes a piezoelectric actuator and a housing. The piezoelectric actuator comprises a suspension plate, an outer frame, at least one bracket and a piezoelectric ceramic plate. The piezoelectric ceramic plate is attached on a first surface of the suspension plate and has a length not larger than that of the suspension plate. The housing includes a gas collecting plate and a base. The gas collecting plate is a frame body with a sidewall and comprises a plurality of perforations. The base seals a bottom of the piezoelectric actuator and has a central aperture corresponding to the middle portion of the suspension plate. When the voltage is applied to the piezoelectric actuator, the suspension plate is permitted to undergo the curvy vibration, the fluid is transferred from the central aperture of the base to the gas-collecting chamber, and exited from the perforations.
Abstract:
A miniature fluid control device includes a gas inlet plate, a resonance plate and a piezoelectric actuator. The gas inlet plate includes at least one inlet, at least one convergence channel and a central cavity. A convergence chamber is defined by the central cavity. The resonance plate has a central aperture. The piezoelectric actuator includes a suspension plate, an outer frame and a piezoelectric ceramic plate. A gap is formed between the resonance plate and the piezoelectric actuator to define a first chamber. When the piezoelectric actuator is driven and after the gas is fed into the miniature fluid control device through the inlet of the gas inlet plate, the gas is sequentially converged to the central cavity through the convergence channel, transferred through the central aperture of the resonance plate, introduced into the first chamber, transferred downwardly through the piezoelectric actuator, and exited from the miniature fluid control device.
Abstract:
A miniature fluid control device includes a piezoelectric actuator and a housing. The piezoelectric actuator comprises a suspension plate, an outer frame, at least one bracket and a piezoelectric ceramic plate. The piezoelectric ceramic plate is attached on a first surface of the suspension plate and has a length not larger than that of the suspension plate. The housing includes a gas collecting plate and a base. The gas collecting plate is a frame body with a sidewall and comprises a plurality of perforations. The base seals a bottom of the piezoelectric actuator and has a central aperture corresponding to the middle portion of the suspension plate. When the voltage is applied to the piezoelectric actuator, the suspension plate is permitted to undergo the curvy vibration, the fluid is transferred from the central aperture of the base to the gas-collecting chamber, and exited from the perforations.
Abstract:
A rapid prototyping apparatus with a page-width array printing module is disclosed. The rapid prototyping apparatus includes a construction platform, a movable platform and a page-width array printing module. The construction platform has a construction chamber. The length of the construction chamber is ranged from 0.8 m to 1.5 m, the width of the construction chamber is ranged from 0.8 m to 1.5 m, and the height of construction chamber is ranged from 0.8 m to 1.2 m. The movable platform is disposed above the construction platform. The page-width array printing module is installed on the movable platform and synchronously moved along a single direction in a reciprocating motion. The page-width array printing module has plural inkjet head structures disposed thereon, so that a rapid prototyping width-page printing operation is performed.
Abstract:
A three-dimensional meat substitute forming apparatus includes a control computer for previously storing an image file of a meat model and outputting a control command corresponding to the image file of the meat model. The powdery meat substitute material is a powdery non-meat protein food material. A three-dimensional meat substitute forming method includes a pretreating process, a soaking and grinding process, a slurry boiling and filtering process, an atomization drying process, a powder spreading and stratifying process, a printing and solidifying process, a laminating process and an excess powder removing process. Consequently, a three-dimensional meat substitute is produced.
Abstract:
An ink-jet printing module is used for a page-width array ink-jet printer. The ink jet printing module includes a page-width array platen and a plurality of ink-jet cartridges. The page-width array platen has a plurality of receiving cavities arranged as an array. Each of the ink-jet cartridges is detachably and independently embedded into one of the receiving cavities.
Abstract:
A purification device for exercise environment is provided and includes a main body, a purification unit, a gas guider and a gas detection module. The purification unit, the gas guider and the gas detection module are disposed in the main body to guide the gas outside the main body through the purification unit for filtering and purifying the gas, and discharge a purified gas. The gas detection module detects particle concentration of suspended particles contained in the purified gas. The gas guider is controlled to operate and export the gas at an airflow rate within 3 minutes. The particle concentration of the suspended particles contained in the purified gas, which is filtered by the purification unit, is reduced to and less than 0.75 μg/m3. Consequently, the purified gas is filtered, and an exerciser in an exercise environment can breathe with safety.
Abstract:
A miniature gas detection system includes a separation flow channel fabricated by semiconductor processes and a filling material disposed in the main flow channel of the separation flow channel to perform adsorption and separation on compositions of compounds contained in the gas introduced into the main flow channel. Each detection flow channel is formed with a monitoring chamber, and a micro-electromechanical systems pump is formed on the bottom portion of the monitoring chamber. In each monitoring chamber, a light emitted from the light emitting element is reflected by the two mirrors and received by the light detection element. Therefore, the light detection elements obtain and output spectra of the compositions of compounds contained in the gas according to the differences in optical adsorptions of the compositions of compounds for lights with different wavelengths, so as to analyze and determine the type of the gas contained in the compositions of compounds.