Abstract:
A three-dimensional cooking machine includes a control computer and a food ingredient laminating device. The control computer is used for previously storing an image file of a desired food model and outputting a control command corresponding to the image file of the food model. The food ingredient laminating device includes an ink-jet printer. The ink-jet printer is controlled to perform a three-dimensional food laminating operation according to the control command from the control computer.
Abstract:
A three-dimensional prototyping composition includes a construction powder mixture and an inkjet liquid. The construction powder mixture includes a powdery molding material and a powdery binding agent. The inkjet liquid includes a nonionic surfactant, at least one polyalcohol compound, an alcohol ether compound, an antimicrobial agent and deionized water. While the inkjet liquid and the construction powder mixture are in contact with each other, the physical binding function of the powdery binding agent of the construction powder mixture is activated. Consequently, the powdery molding material and the powdery binding agent stick together to form a molded construction layer of a three-dimensional object. Moreover, the construction powder mixture can be recycled. Moreover, since the inkjet liquid may be ejected through the thermal bubble printhead, the fabricating cost of the three-dimensional physical model is reduced.
Abstract:
A page-width printing platform comprises a plurality of inkjet head structures collaboratively defined as at least one page-width array printing unit. The inkjet head structures comprise respective inkjet chips disposed on the printing platform and arranged in plural rows and in a staggered form, so that a printing width of the inkjet chips is larger than or equal to a width of a printed pattern. Each of the inkjet chips comprises at least one liquid supply slot, wherein a plurality of liquid ejectors are located at one or two sides of the liquid supply slot along a long axis of the liquid supply slot. At least one monochromatic print liquid is introduced into the construction chamber from the plural inkjet head structures and printed on a construction material within the construction chamber, so that a rapid prototyping width-page printing operation is performed.
Abstract:
An ink supply structure includes at least one ink cartridge, at least one dye ink chamber, and at least one pigment ink chamber. The at least one dye ink chamber is contained in the at least one ink cartridge for storing a dye ink. The at least one pigment ink chamber is contained in the at least one ink cartridge for storing a pigment ink. One of the dye ink within the dye ink chamber and the pigment ink within the pigment ink chamber is selectively supplied from the at least one ink cartridge.
Abstract:
An ink-jet printing module is used for a page-width array ink-jet printer. The ink jet printing module includes a page-width array platen and a plurality of ink-jet cartridges. The page-width array platen has a plurality of receiving cavities arranged as an array. Each of the ink-jet cartridges is detachably and independently embedded into one of the receiving cavities, and includes a body for storing ink, an ink-jet chip to be driven for ejecting the ink, a plurality of nozzles disposed on the ink-jet chip, and a control node for receiving signal to drive the ink-jet chip. The ink-jet chip is disposed on a bottom of the page-width array platen and is driven to eject the ink through the nozzles onto a printing medium.
Abstract:
A fluid pump module includes a heat dissipation board assembly, a fixing frame body, fluid pumps, a control board and a conveying pipe is provided. The fixing frame body is fixed at one side of the heat dissipation board assembly, so as to form two accommodating spaces between the heat dissipation board assembly and the fixing frame body. Two fluid pumps are respectively disposed in the two accommodating spaces. The control board is disposed at another side of the heat dissipation board assembly. The conveying pipe connects the two fluid pumps in series so as to form a series connection therebetween. The control board controls operations of the fluid pumps, and the heat dissipation board assembly dissipates heats produced by a module formed by the two fluid pumps.
Abstract:
A helmet includes a helmet body and a gas detection and purification device. The gas detection and purification device in includes a body, a purification module, a gas-guiding unit, a gas detection module, and a power module. The gas detection module calculates the gas detection data obtained by the gas detection module so as to control the gas-guiding unit to start or stop operation based on the gas detection data. When the gas-guiding unit is in operation, the gas-guiding unit guides the gas into the body and to pass through the purification module for being filtered and purified to become a purified gas, and the gas-guiding unit discharges the purified gas out of the body to the nose portion, or the mouth portion, or both the nose portion and the mouth portion of the wearer for providing the wearer with the purified gas to breath.
Abstract:
A wearable device for measuring a cardiovascular system of a user includes an attachment component, a blood pressure measurement module, and a sensor configured to detect an existence of a limb part of the user. The attachment component is for attaching the wearable device to the limb part of the user and includes a connecting mechanism. A condition of the connecting mechanism can be used to determine whether the attachment component is in a connected configuration or in a disconnected configuration. The blood pressure measurement module has an expander, an actuator, and a blood pressure measurement sensor. The expander can be disposed on the limb part and can contact against the user. The expander can be controlled by the actuator to be inflated, by which the blood pressure measurement sensor can measure blood pressure in the cardiovascular system of the user.
Abstract:
A micro detecting device includes a controller and a mobile device. The controller has a first wireless communication module. The mobile vehicle includes a vehicle body; a processor, accommodated in the vehicle body; a second wireless communication module, accommodated in the vehicle body and electrically connected to the processor; a power actuator, disposed on the vehicle body and electrically connected to the processor for driving the vehicle body; a recording unit, disposed on the vehicle body and electrically connected to the processor and the second wireless communication module, and the recording unit is configured to generate a recorded signal; and a fluid detecting unit, disposed on the vehicle body and electrically connected to the processor and the second wireless communication module, and the fluid detecting unit is configured to generate a detection signal.
Abstract:
A remote control system for gas detection and purification is disclosed and includes a remote control device, a gas detection module and a gas purification device. The remote control device includes a gas inlet and a gas outlet. The gas detection module is disposed in the remote control device and in communication with the gas outlet to detect the gas located in an indoor space. The gas detection module provides and outputs a gas detection datum, and the remote control device transmits an operation command via wireless transmission. The gas purification device is disposed in the indoor space and receives the operating instruction transmitted from the remote control device to be operated. When the gas purification device is under the activated state, the gas in the indoor space is purified, and the purification operation mode of the gas purification device is adjusted according to the first gas detection datum.