Abstract:
A method of making an imprinted optical micro-channel structure for transmitting light to an optical receiver or receiving light from an optical transmitter includes forming a curable optical layer over a substrate and imprinting one or more optical micro-channels in the optical layer with a first stamp. The curable optical layer is cured to form a cured optical layer having the optical micro-channels imprinted in the cured optical layer. A curable light-transparent material is located in the optical micro-channels and cured to form light-pipes of cured light-transparent material in the optical micro-channels. The optical transmitter located in alignment with a light-pipe for transmitting light through the light-pipe or the optical receiver is located in alignment with a light-pipe for receiving light from the light-pipe.
Abstract:
A method of making a thin-film multi-layer micro-wire structure includes providing a substrate and a layer on the substrate with one or more micro-channels having a width less than or equal to 20 microns. A conductive material including silver nano-particles and having a percent ratio of silver that is greater than or equal to 40% by weight is located in the micro-channels and cured to form an electrically conductive micro-wire. The electrically conductive micro-wire has a width less than or equal to 20 microns and a depth less than or equal to 20 microns. Each micro-wire is electrolessly plated to form a plated layer located at least partially within each micro-channel between the micro-wire and the layer surface in electrical contact with the micro-wire. The plated layer has a thickness less than a thickness of the micro-wire so that the micro-wire and plated layer form the thin-film multi-layer micro-wire.
Abstract:
A method of making a micro-wire rib structure includes providing a substrate and locating a curable layer on or over the substrate. The curable layer is imprinted and cured to form a cured layer including a cured-layer surface and a micro-channel having a micro-channel depth, a micro-channel bottom, first and second micro-channel sides, and one or more ribs having opposing rib sides and a rib top defining a rib height less than the micro-channel depth. Each rib is located between the first and second micro-channel sides and extends from the micro-channel bottom toward the cured-layer surface. A curable conductive material is located in the micro-channel and cured to provide a cured electrical conductor forming a micro-wire in the micro-channel. The micro-wire extends continuously from the first micro-channel side, over the micro-channel bottom, the rib side(s) and rib top(s), to the second micro-channel side forming a continuous electrical conductor from the first micro-channel side to the second micro-channel side.
Abstract:
A method of making a display device includes providing a first substrate having an array of pixels located in correspondence thereto. The pixels are separated by inter-pixel gaps. A first electrode having a length direction is located over the first substrate and extends across at least a portion of the array of pixels, the first electrode including a plurality of electrically connected micro-wires formed in a micro-pattern. The micro-pattern has a first set of parallel micro-wires oriented at a first angle non-orthogonal to the length direction and a second set of parallel micro-wires oriented at a second angle non-orthogonal to the length direction different from the first angle. The micro-wires of the first and second sets intersect to form an array of electrically connected micro-wire intersections. At least every other micro-wire intersection on the micro-wires of the first set is located between the pixels in the inter-pixel gaps.
Abstract:
A method of making a micro-wire electrode structure includes providing a substrate having a surface. A plurality of first micro-wire electrodes spatially separated by first electrode gaps is located in a first layer in relation to the surface, each first micro-wire electrode including a plurality of electrically connected first micro-wires. A plurality of electrically isolated second micro-wire electrodes in a second layer is located in relation to the surface, the second layer at least partially different from the first layer and each second micro-wire electrode including a plurality of electrically connected second micro-wires. A plurality of first gap micro-wires is located in each first electrode gap, at least some of the first gap micro-wires located in a gap layer different from the first layer, the first gap micro-wires electrically isolated from the first micro-wires.
Abstract:
A single-side touch-screen device includes a substrate having a cured layer with a patterned arrangement of micro-channels embossed therein and a cured electrically conductive micro-wire formed in each micro-channel. A patterned dielectric insulator is located over one or more middle portions of at least some of the micro-wires forming insulated micro-wire portions and exposed micro-wire portions. A plurality of patterned transparent conductors are conformally coated in an array over at least a part of the patterned dielectric insulator, at least a part of the insulated micro-wire portions, and at least a part of the exposed micro-wire portions, the at least a part of the exposed micro-wire portions electrically connected to at least a portion of the patterned transparent conductors. The transparent conductors and the micro-wires form an array of electrically connected horizontal electrodes and an array of electrically connected vertical electrodes electrically isolated from the horizontal electrodes.
Abstract:
A method of making an imprinted optical micro-channel structure for transmitting light to an optical receiver or receiving light from an optical transmitter includes forming a curable optical layer over a substrate and imprinting one or more optical micro-channels in the optical layer with a first stamp. The curable optical layer is cured to form a cured optical layer having the optical micro-channels imprinted in the cured optical layer. A curable light-transparent material is located in the optical micro-channels and cured to form light-pipes of cured light-transparent material in the optical micro-channels. The optical transmitter located in alignment with a light-pipe for transmitting light through the light-pipe or the optical receiver is located in alignment with a light-pipe for receiving light from the light-pipe.
Abstract:
A touch-screen device includes a transparent dielectric layer. An anisotropically conductive first electrode extends in a first length direction over the substrate and an anisotropically conductive second electrode having a second length direction is formed under the substrate. The anisotropically conductive first and second electrodes each include a plurality of electrically connected micro-wires, including parallel straight micro-wires extending in the corresponding first and second length directions and angled micro-wires formed at a non-orthogonal angle to the straight micro-wires. The angled micro-wires electrically connect the straight micro-wires so that the anisotropically conductive first and second electrodes each have a greater electrical conductivity in the corresponding first and second length directions than in another anisotropically conductive electrode direction.
Abstract:
A micro-louver structure includes a cured layer on a surface. A plurality of micro-channels forms a pattern in the cured layer. The micro-channels have a greater depth than width and are spaced apart by a separation distance greater than the width. A cured light-absorbing material is located in the micro-channels.
Abstract:
A method of making a multi-layer micro-wire structure includes providing a substrate having a substrate edge and first and second layers formed over the substrate. One or more micro-channels are imprinted in each of the first and second layers and first and second micro-wires located in the imprinted micro-channels, the micro-wires forming at least a portion of an exposed connection pad in each layer. The second layer edge is farther from the substrate edge than the first layer edge for at least a portion of the second layer edge so that the first connection pads are exposed through the second layer.