Abstract:
The present invention provides a semiconductor structure including a substrate, a transistor, a first ILD layer, a second ILD layer, a first contact plug, second contact plug and a third contact plug. The transistor is disposed on the substrate and includes a gate and a source/drain region. The first ILD layer is disposed on the transistor. The first contact plug is disposed in the first ILD layer and a top surface of the first contact plug is higher than a top surface of the gate. The second ILD layer is disposed on the first ILD layer. The second contact plug is disposed in the second ILD layer and electrically connected to the first contact plug. The third contact plug is disposed in the first ILD layer and the second ILD layer and electrically connected to the gate. The present invention further provides a method of making the same.
Abstract:
The present invention provides a manufacturing method of a semiconductor structure, comprising the following steps. First, a substrate is provided, a first dielectric layer is formed on the substrate, a metal gate is disposed in the first dielectric layer and at least one source/drain region (S/D region) is disposed on two sides of the metal gate, a second dielectric layer is then formed on the first dielectric layer, a first etching process is then performed to form a plurality of first trenches in the first dielectric layer and the second dielectric layer, wherein the first trenches expose each S/D region. Afterwards, a salicide process is performed to form a salicide layer in each first trench, a second etching process is then performed to form a plurality of second trenches in the first dielectric layer and the second dielectric layer, and the second trenches expose the metal gate.
Abstract:
A method for manufacturing a semiconductor device and a device manufactured using the same are provided. According to a dual silicide approach of the embodiment, a substrate having a first area with plural first metal gates and a second area with plural second metal gates is provided, wherein the adjacent first metal gates and the adjacent second metal gates are separated by an insulation. A dielectric layer is formed on the first and second metal gates and the insulation. The dielectric layer and the insulation at the first area are patterned by a first mask to form a plurality of first openings. Then, a first silicide is formed at the first openings. The dielectric layer and the insulation at the second area are patterned by a second mask to form a plurality of second openings. Then, a second silicide is formed at the second openings.
Abstract:
A manufacturing method for a semiconductor device first provides a substrate having at least a first transistor formed thereon. The first transistor includes a first conductivity type. The first transistor further includes a first metal gate and a protecting layer covering sidewalls of the first metal gate. A portion of the first metal gate is removed to form a first recess and followed by removing a portion of the protecting layer to form a second recess. Then, an etch stop layer is formed in the second recess.
Abstract:
A method for fabricating a semiconductor device is provided herein and includes the following steps. First, a first interlayer dielectric is formed on a substrate. Then, a gate electrode is formed on the substrate, wherein a periphery of the gate electrode is surrounded by the first interlayer dielectric. Afterwards, a patterned mask layer is formed on the gate electrode, wherein a bottom surface of the patterned mask layer is leveled with a top surface of the first interlayer dielectric. A second interlayer dielectric is then formed to cover a top surface and each side surface of the patterned mask layer. Finally, a self-aligned contact structure is formed in the first interlayer dielectric and the second interlayer dielectric.
Abstract:
A plug structure including a first dielectric layer, a second dielectric layer, a barrier layer and a second plug is provided. The first dielectric layer having a first plug therein is located on a substrate, wherein the first plug physically contacts a source/drain in the substrate. The second dielectric layer having an opening exposing the first plug is located on the first dielectric layer. The barrier layer conformally covers the opening, wherein the barrier layer has a bottom part and a sidewall part, and the bottom part is a single layer and physically contacts the first plug while the sidewall part is a dual layer. The second plug fills the opening and on the barrier layer. Moreover, a process of forming a plug structure is also provided.
Abstract:
A plug structure including a first dielectric layer, a second dielectric layer, a barrier layer and a second plug is provided. The first dielectric layer having a first plug therein is located on a substrate, wherein the first plug physically contacts a source/drain in the substrate. The second dielectric layer having an opening exposing the first plug is located on the first dielectric layer. The barrier layer conformally covers the opening, wherein the barrier layer has a bottom part and a sidewall part, and the bottom part is a single layer and physically contacts the first plug while the sidewall part is a dual layer. The second plug fills the opening and on the barrier layer. Moreover, a process of forming a plug structure is also provided.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a region; forming a gate structure on the region of the substrate; forming a raised epitaxial layer in the substrate adjacent to two sides of the gate structure; covering a dielectric layer on the gate structure and the raised epitaxial layer; and using a planarizing process to partially remove the dielectric layer and the gate structure such that the surface of the gate structure is even with the surface of the raised epitaxial layer.
Abstract:
The present invention provides a method for forming a semiconductor structure having a metal connect. A substrate is provided, and a transistor and a first ILD layer are formed thereon. A first contact plug is formed in the first ILD layer to electrically connect the source/drain region. A second ILD layer and a third ILD layer are formed on the first ILD layer. A first opening above the gate and a second opening above the first contact plug are formed, wherein a depth of the first contact plug is deeper than that of the second opening. Next, the first opening and the second opening are deepened. Lastly, a metal layer is filled into the first opening and the second opening to respectively form a first metal connect and a second metal connect.
Abstract:
A method for fabricating semiconductor device includes the steps of first providing a substrate having a magnetic tunnel junction (MTJ) region and an edge region, forming an first inter-metal dielectric (IMD) layer on the substrate, and then forming a first MTJ and a second MTJ on the first IMD layer, in which the first MTJ is disposed on the MTJ region while the second MTJ is disposed on the edge region. Next, a second IMD layer is formed on the first MTJ and the second MTJ.