Abstract:
An airfoil for a gas turbine engine includes a body having leading and trailing edges joined by spaced apart pressure and suction sides to provide an exterior airfoil surface defined by a perimeter wall. An interior wall is arranged interiorly and adjacent to the perimeter wall to provide a cooling passage there between. A cooling passage with first and second portions is tapered and respectively has first and second thicknesses. The first thickness is greater than the second thickness. The second thickness is less than 0.060 inch (1.52 mm).
Abstract:
A self-cooled orifice structure, that may be for a combustor of a gas turbine engine includes a hot side panel, a cold side panel spaced from the hot side panel, and a continuous first wall extending axially between the hot and cold side panels and spaced radially outward from a centerline. The structure may further include a first plurality of helical vanes projecting laterally, radially, inward from the first wall for flowing cooling air in a spiraling fashion through the cold side panel, then through the hot side panel.
Abstract:
A self-cooled orifice structure that may be for a combustor of a gas turbine engine, and may further be a dilution hole structure, includes a hot side panel, a cold side panel spaced from the hot side panel, and a continuous inner wall extending between the hot and cold side panels and defining an orifice having a centerline and communicating axially through the hot and cold side panels. A plurality of end walls of the structure are in a cooling cavity that is defined in-part by the hot and cold side panels and the inner wall. Each end wall extends between and are engaged to the hot and cold side panels and are circumferentially spaced from the next adjacent end wall. A plurality of inlet apertures extend through the cold side panel and are in fluid communication with the cavity, and each one of the plurality of inlet apertures are proximate to a first side of a respective one of the plurality of end walls. A plurality of outlet apertures extend through the hot side panel and are in fluid communication with the cavity, and each one of the plurality of outlet apertures are associated with an opposite second side of a respective one of the plurality of end walls.
Abstract:
An airfoil includes an airfoil section that has an airfoil wall that defines leading and trailing ends and first and second sides that join the leading and trailing ends. The first and second sides span in a longitudinal direction between first and second ends. The airfoil wall circumscribes an internal core cavity. A platform is attached with the first end of the airfoil wall. The platform includes an opening that opens into the internal core cavity and a land region that circumscribes the opening. A baffle is formed of a tube and an attachment portion. The tube extends in the internal core cavity and the attachment portion has a flange ring that is affixed to the platform at the land region.
Abstract:
An airfoil includes an airfoil section that has an airfoil wall that defines an arced leading end, a trailing end, and first and second sides that join the arced leading end and the trailing end. The first and second sides span in a longitudinal direction between first and second ends. The airfoil wall circumscribes an internal core cavity. There is an arced rib in the internal core cavity. A cooling passage network is embedded in the airfoil wall between inner and outer portions of the airfoil wall. The cooling passage network has a trailing edge and an arced leading edge.
Abstract:
A gas turbine engine article includes an article wall that defines leading and trailing ends and first and second sides that join the leading and trailing ends. The article wall defines a cavity. A cooling passage network is embedded in the article wall between inner and outer portions of the article wall. The cooling passage network has an inlet orifice through the inner portion of the article wall to receive cooling air from the cavity, a plurality of sub-passages that extend axially from the at least one inlet orifice, at least one outlet orifice through the outer portion of the airfoil wall, and trip strips for mixing cooling air in the cooling passage network.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a first cavity, a second cavity and a rib between the first cavity and the second cavity, the rib including a first rib surface that is substantially flat and a second rib surface that is tapered.
Abstract:
A vane for a gas turbine engine includes at least one airfoil. A first platform has a first rail located at a first end of the airfoil. A second platform has a second rail located at a second end of the airfoil. A first chordal seal is located on an axially aft surface of the first rail. A second chordal seal is located on an aft surface of the second rail and has a second radius of curvature at least partially truncated by an outer edge of the second rail.
Abstract:
Airfoils for a gas turbine engines and gas turbine engines are described. The airfoils include an airfoil body extending in a radial direction from a first end to a second end, and axially from a leading edge to a trailing edge. A radially extending leading edge channel is formed in the leading edge of the airfoil body, having first and second channel walls that join at a channel base. A first leading edge impingement cavity is located within the airfoil body proximate the leading edge and is defined, in part, by the first channel wall. A leading edge feed cavity is arranged aft of the first leading edge impingement cavity to supply air into the first leading edge impingement cavity. A first leading edge impingement hole is formed in the first channel wall and angled toward a portion of the second channel wall.
Abstract:
A combustor section of a gas turbine engine includes a combustor having a combustor inlet, and a combustor bypass passage having a passage inlet located upstream of the combustor inlet. The combustor bypass passage is configured to divert a selected bypass airflow around the combustor. A combustor bypass valve is located at the combustor bypass passage to control the selected bypass airflow along the combustor bypass passage. A method of operating a gas turbine engine, includes urging a core airflow from a compressor section toward a combustor section, flowing a first portion of the core airflow into the combustor section via a combustor inlet, and flowing a second portion of the core airflow into a combustor bypass passage via a combustor bypass valve, thereby bypassing the combustor with the second portion of the core airflow.