Abstract:
An inkjet printer is configured to apply a coating material to an imaging surface before an ink image is formed on the surface. At least one optical sensor generates image data of the coating on the imaging surface and identifies a thickness of the coating material. Components of the coating material applicator can be adjusted to keep the thickness of the coating material within a predetermined range.
Abstract:
Systems for and methods of providing a feed rate for three-dimensional printing a part are presented. The disclosed techniques include: obtaining computer readable toolpath instructions for the part, where the toolpath instructions specify a nominal feed rate for a toolpath segment and spatial toolpath data of the toolpath segment; providing an input including the spatial toolpath data to a trained machine learning system, where the trained machine learning system has been trained using training data including: training spatial toolpath data, training closed loop gain data, and training feed rate data; obtaining a revised feed rate for the toolpath segment different from the nominal feed rate for the toolpath segment, where the revised feed rate is output from the trained machine learning system; and providing revised computer readable toolpath instructions, where the revised machine learning toolpath instructions include the revised feed rate.
Abstract:
A slicer in a material drop ejecting three-dimensional (3D) object printer identifies the positions and local densities for a plurality of infill lines within a perimeter to be formed within a layer of an object to be formed by the printer. The local density of each infill line is filtered and a control law is applied to the filtered local density to identify an error in the local density compared to a target density. This process is performed iteratively until the error is within a predetermined tolerance range about the target local density. The error is used to generate machine ready instructions to operate the 3D object printer to achieve the target density for the infill lines.
Abstract:
A method operates a three-dimensional (3D) metal object manufacturing system to compensate for displacement errors that occur during object formation. In the method, image data of a metal object being formed by the 3D metal object manufacturing system is generated prior to completion of the metal object and compared to original 3D object design data of the object to identify one or more displacement errors. For the displacement errors outside a predetermined difference range, the method modifies machine-ready instructions for forming metal object layers not yet formed to compensate for the identified displacement errors and operates the 3D metal object manufacturing system using the modified machine-ready instructions.
Abstract:
A slicer in a material drop ejecting three-dimensional (3D) object printer determines the number of material drops to eject to form a perimeter in an object layer and distributes a quantization error over the layers forming the perimeter. The slicer also identifies the location for the first material drop ejected to form the perimeter using a blue noise generator.
Abstract:
A metal object manufacturing apparatus is configured to eject melted metal drops to form a continuous metal line over a line of spatially separated pillars in a single pass. The ejection frequency for forming the continuous metal line is different than the frequency used to form the pillars. In one embodiment, the ejection frequency for forming the pillars is about 100 Hz and the frequency used to form the continuous metal line over the line of spatially separated pillars is about 300 Hz with a drop spacing of about 0.2 mm. Continuous metal lines are formed to extend the continuous metal lines over the pillars laterally to fill the gaps between the continuous metal lines over the pillars. These continuous metal lines that fill the gaps are formed while operating the ejection head at the 300 Hz frequency with a drop spacing of 0.28 mm.
Abstract:
A method includes ejecting a plurality of drops of a build material from a nozzle of a 3D printer. The build material cools and solidifies after being ejected to form a 3D object. The method also includes controlling an oxidation of the drops, the 3D object or both to create different oxidation levels in first and second portions of the 3D object.
Abstract:
A three-dimensional object printer includes at least one ejector that is operated to form an uppermost layer of photopolymer material on a substrate. The ejected uppermost photopolymer layer is partially cured and a portion of mesh sheet is positioned on the partially cured layer before the at least one eject continues to eject photopolymer material onto the uppermost layer. The portion of the mesh sheet reinforces the layers of photopolymer material and adds strength and durability to the overall part being formed with the photopolymer material.
Abstract:
A slicer in a material drop ejecting three-dimensional (3D) object printer generates machine ready instructions that operate components of a printer, such as actuators and an ejector having at least one nozzle, to form features of an object more precisely than previously known. The instructions generated by the slicer control the actuators to move the ejector and a platform on which the object is formed relative to one another at a constant velocity to form edges of the feature.
Abstract:
A slicer in a material drop ejecting three-dimensional (3D) object printer determines the number of material drops to eject to form a perimeter in an object layer and distributes a quantization error over the layers forming the perimeter. The slicer also identifies the location for the first material drop ejected to form the perimeter using a blue noise generator.