Abstract:
A system and method for interconnecting a plurality of processing element nodes within a scalable multiprocessor system is provided. Each processing element node includes at least one processor and memory. A scalable interconnect network includes physical communication links interconnecting the processing element nodes in a cluster. A first set of routers in the scalable interconnect network route messages between the plurality of processing element nodes. One or more metarouters in the scalable interconnect network route messages between the first set of routers so that each one of the routers in a first cluster is connected to all other clusters through one or more metarouters.
Abstract:
A rack mounted computer system. In one variation the computer rack is configured for side-by-side placement of computers. In another variation, the computer rack includes flanges for supporting the placement of computer units within the rack. In another variation the computer rack is configured with retaining clips. In yet another variation, the computer rack is configured to receive computers with chassis that are adapted for side-by-side placement.
Abstract:
A system, method, and computer program product are provided for remote rendering of computer graphics. The system includes a graphics application program resident at a remote server. The graphics application is invoked by a user or process located at a client. The invoked graphics application proceeds to issue graphics instructions. The graphics instructions are received by a remote rendering control system. Given that the client and server differ with respect to graphics context and image processing capability, the remote rendering control system modifies the graphics instructions in order to accommodate these differences. The modified graphics instructions are sent to graphics rendering resources, which produce one or more rendered images. Data representing the rendered images is written to one or more frame buffers. The remote rendering control system then reads this image data from the frame buffers. The image data is transmitted to the client for display or processing. In an embodiment of the system, the image data is compressed before being transmitted to the client. In such an embodiment, the steps of rendering, compression, and transmission can be performed asynchronously in a pipelined manner.
Abstract:
A cluster of computer system nodes connected by a storage area network include two classes of nodes. The first class of nodes can act as clients or servers, while the other nodes can only be clients. The client-only nodes require much less functionality and can be more easily supported by different operating systems. To minimize the amount of data transmitted during normal operation, the server responsible for maintaining a cluster configuration database repeatedly multicasts the IP address, its incarnation number and the most recent database generation number. Each node stores this information and when a change is detected, each node can request an update of the data needed by that node. A client-only node uses the IP address of the server to connect to the server, to download the information from the cluster database required by the client-only node and to upload local disk connectivity information.
Abstract:
A system and method for remote rendering of computer graphics wherein user transactions are reliable and the transmission of rendered graphics is relatively fast. The invention is implemented in a client server context, where a computer graphics application and rendering resources are located at a server. A user controls the graphics application through a client machine connected to the server through a computer network. The user's commands are sent from the client to the server, while rendered computer graphics are transmitted from the server to a display at the client. Different transport protocols are used, depending on the requirements of a particular transmission. Data related to user interactions is transmitted using a relatively reliable transport protocol, such as TCP. Rendered subject graphics data is transmitted from the server to the client using a less reliable but faster transport protocol, such as UDP.
Abstract:
In an embodiment, a system includes a resource. The system also includes a first processor having a load/store functional unit. The load/store functional unit is to attempt to access the resource based on access requests. The first processor includes a congestion detection logic to detect congestion of access of the resource based on a consecutive number of negative acknowledgements received in response to the access requests prior to receipt of a positive acknowledgment in response to one of the access requests within a first time period.
Abstract:
A high performance computing system and methods are disclosed. The system includes logical partitions with physically removable nodes that each have at least one processor, and memory that can be shared with other nodes. Node hardware may be removed or allocated to another partition without a reboot or power cycle. Memory sharing is tracked using a memory directory. Cache coherence operations on the memory directory include a test to determine whether a given remote node has been removed. If the remote node is not present, system hardware simulates a valid response from the missing node.
Abstract:
A primary data storage system is connected with a separate and external active archive storage system to consolidate data and allow active archive data to be managed based on primary storage system events. The primary data storage system may be managed and maintained by an external entity, and may include a manager module such as a resource manager. The active archive system may include several tiers of storage in a hierarchical storage system and logic for moving data between and among the tiers. As data processing milestones are completed or the state of data changes, in projects stored in the primary data storage system, task milestone or state change events are detected. Event detection can trigger data movement in the active archive solution. One or more software modules implementing the present invention may detect the events and trigger active archive operations based on the events.
Abstract:
Embodiments of the presently claimed invention enable a RAID set to appear as if it were initialized immediately after a command to initialize a RAID set is initiated. Typically, a driver or other software in the software stack intercepts the command to initialize the RAID set. The driver then responds to user application programs as if the RAID set initialization is complete, even when it is not. After intercepting the RAID set initialization command, the driver will intercept and respond to data read or write commands as if the RAID set were initialized. The driver or other software will then, typically initialize the RAID set using background tasks. In certain instances, data stored in a non-RAID configuration may be migrated to a RAID configuration during the initialization process.
Abstract:
A cluster of computer system nodes connected by a storage area network include two classes of nodes. The first class of nodes can act as clients or servers, while the other nodes can only be clients. The client-only nodes require much less functionality and can be more easily supported by different operating systems. To minimize the amount of data transmitted during normal operation, the server responsible for maintaining a cluster configuration database repeatedly multicasts the IP address, its incarnation number and the most recent database generation number. Each node stores this information and when a change is detected, each node can request an update of the data needed by that node. A client-only node uses the IP address of the server to connect to the server, to download the information from the cluster database required by the client-only node and to upload local disk connectivity information.