Abstract:
A thermally treated expanded perlite that can be coated or impregnated with at least one active material and the use of the thermally treated expanded perlite as a light-weight filtration media. Methods for forming thermally treated expanded perlite as well as methods for forming thermally treated perlite coated or impregnated with an active material are also disclosed.
Abstract:
Embodiments of the present invention feature article of manufacture, methods of making and methods of using a paste of the reaction product of an organic amine and support particles, shaped as pellets, sheets, films, rings discs or other forms useful for scrubbing carbon dioxide from emissions and the atmosphere.
Abstract:
Provided in one embodiment is a method of making an aerogel, comprising: (A) increasing a concentration of a suspension comprising a gel precursor under a condition that promotes formation of a gel, wherein the gel precursor comprises particulates having an asymmetric geometry; and (B) removing a liquid from the gel to form the aerogel, wherein the aerogel and the gel have substantially the same geometry. An aerogel comprising desirable properties are also provided.
Abstract:
This invention concerns a method for recovering carbon monoxide and carbon dioxide from Fischer-Tropsch off-gas by feeding Fischer-Tropsch off-gas through a column comprising an adsorbent bed, and discharging effluent, optionally rinsing the column and the adsorbent bed by feeding NG and discharging effluent until at least 60% of the carbon monoxide that was present in the bed is discharged, pressurizing the column and adsorbent bed with NG, rinsing the column and the adsorbent bed by feeding NG until at least 50% of the carbon dioxide present at the commencement of this rinsing step is discharged, rinsing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen, pressurizing the column and adsorbent bed by feeding a mixture of hydrogen and nitrogen. With this method a feed comprising at least 50 vol % carbon monoxide can be produced. Furthermore, methane and carbon dioxide at a high pressure can be recovered from the Fischer-Tropsch gas. This can be fed to a gasifier or a reformer. In a preferred embodiment a gas comprising at least 80 vol % hydrogen is produced as well.
Abstract:
Provided are a method of manufacturing a lithium silicate-based high-temperature dry sorbent for removing carbon dioxide and a high-temperature dry sorbent. The manufacturing method includes forming a mixed raw material by mixing a lithium precursor, silicon oxide and a metal oxide, obtaining a lithium silicate solid by drying the mixed raw material, and baking the obtained lithium silicate solid.
Abstract:
A pressure swing adsorption apparatus for the removal of one or more components such as oxygen from a mixture of gases such as air is disclosed. The apparatus includes pairs of columns (14, 16) for receiving a stream of compressed air with one column operating in a working mode whilst the other said column operates in a purging mode. The columns contain carbon molecular sieve material (26) for adsorbing oxygen and a desiccant material formed into a plurality of tubes (28).
Abstract:
The present invention provides a process for preparing ball-type desulfurizer with high sulfur capacity, comprising the following steps: placing initial balls in a rolling equipment; wetting the surface of the initial balls with an aqueous solution of an organic binder; then alternately adding non-crystalline iron oxide hydroxide and the aqueous solution of the organic binder to gradually form small balls of non-crystalline iron oxide hydroxide with high sulfur capacity and different diameters; and adjusting the shape of the small balls and then roasting or naturally drying the small balls. In the desulfurizer prepared by this method, the initial balls constitutes 0.98 wt %-9.03 wt % of the desulfurizer, the non-crystalline iron oxide hydroxide constitutes 90.29 wt %-98.62 wt % of the desulfurizer, and the organic binder constitutes 0.58 wt %-0.89 wt % of the desulfurizer. The present invention solves the problems that the desulfurizer with high sulfur capacity in the prior art has a high binder content and poor water resistance and diffusion performance, and provides a process for preparing a desulfurizer with high sulfur capacity, wherein a desulfurizer with high sulfur capacity and low binder content, good water resistance, good diffusion performance can be prepared.
Abstract:
A structure and system for the adsorption of carbon dioxide from air, the system comprising a sorbent structure comprising a porous substrate having a porous alumina coating on the surfaces of said substrate, and the sorbent for carbon dioxide is embedded on the surfaces of said porous alumina coating. The substrate is preferably a porous monolith, formed from silica or mesocellular foam. The sorbent is an amine group-containing material, preferably loaded at 40 to 60 percent by volume relative to the porous alumina coating.
Abstract:
The present invention provides an oxygen absorbing agent composition comprising a compound (A) having two or more tetralin rings, and a transition metal catalyst.
Abstract:
A method of removing mercury and/or sulfur from a fluid stream comprising contacting the fluid stream with a sorbent comprising a core and a porous shell formed to include a plurality of pores extending therethrough and communicating with the core. The core comprises a copper compound selected from the group consisting of a basic copper oxysalt, a copper oxide, and a copper sulfide.