Abstract:
In one embodiment, a method of neutralizing the matrix of an acidic solution including at least one metal using a weak anion exchange resin is provided. The method includes the acts of: activating the weak anion exchange resin with a weakly acidic metal complexing reagent, the weakly acidic metal complexing reagent partially disassociating into protons and metal complexing anions, whereby some functional groups in the weak anion exchange resin are protonated and bind with the metal complexing anions; and neutralizing a sample of the acidic solution with the activated weak anion exchange resin.
Abstract:
The present invention relates to a method for the demineralization of water using a combination of a monodisperse cation filter operated as a lift bed and a monodisperse anion filter operated in the cocurrent flow procedure, and also devices which comprise such a lift bed in combination with at least one cocurrent flow filter and if appropriate a trickling degasser and/or a mixed-bed filter.
Abstract:
A sprayer and a kit including a sprayer and accessories for use with the sprayer is disclosed. In one non-limiting embodiment, the kit may include a carrying case for the sprayer and accessories for the sprayer. The carrying case may have a number of features. Since the sprayer and accessories may be wet after use, the carrying case may have one or more openings therein that provide vents to facilitate drying of the sprayer and accessories after they are used and placed in the carrying case. The carrying case may include one or more of the following items in addition to the sprayer: a purifier for the sprayer; soap for use with the sprayer; quick-connect adaptors to facilitate connecting the sprayer to a water hose, such as a garden hose; and one or more devices for use in a washing process. If the kit is for car care, such one or more devices may include, but are not limited to: a washing implement such as a brush, a cloth, or a wash mitt.
Abstract:
Rinse aid materials for coating, coating compositions, methods and articles of manufacture for use in automatic dishwashing appliances comprising a nanoparticle system or employing the same to impart surface modifying benefits for all types of dishware surfaces are disclosed. In some embodiments, dispersement of nanoparticles in a suitable carrier medium allows for the creation of rinse aid surface coating compositions, methods and articles of manufacture that create multi-use benefits to modified dishware surfaces. These surface modifications can produce long lasting or semi-permanent multi-use benefits that include at least one of the following improved surface properties: wetting and sheeting, uniform drying, anti-spotting, anti-staining, anti-filming, self cleaning, and durability benefits, relative to dishware surfaces unmodified with such nanoparticle systems. In some embodiments, actively curing the rinse aid surface coating composition on the dishware surfaces, including, but not limited to by radiative heating the air surrounding the dishware surface with the coating thereon can be used to increase the durability of the dishware surface coating.
Abstract:
Materials for coating, coating compositions, methods and articles of manufacture comprising a nanoparticle system or employing the same to impart surface modifying benefits for all types of hard surfaces are disclosed. In some embodiments, dispersement of nanoparticles in a suitable carrier medium allows for the creation of coating compositions, methods and articles of manufacture that create multi-use benefits to modified hard surfaces. In some embodiments, actively curing the coating composition on the hard surfaces, including, but not limited to by radiative heating the air surrounding the hard surface with the coating thereon can be used to increase the durability of the hard surface coating.
Abstract:
Materials for coating, coating compositions, methods and articles of manufacture comprising a nanoparticle system or employing the same to impart surface modifying benefits for all types of inanimate hard surfaces are disclosed. In some embodiments, dispersement of nanoparticles in a suitable carrier medium allows for the creation of coating compositions, methods and articles of manufacture that create multi-use benefits to modified hard surfaces. These surface modifications can produce long lasting or semi-permanent multi-use benefits that include at least one of the following improved surface properties: wetting and sheeting, quick drying, uniform drying, soil removal, self-cleaning, anti-spotting, anti-soil deposition, cleaner appearance, enhanced gloss, enhanced color, minor surface defect repair, smoothness, anti-hazing, modification of surface friction, release of actives and transparency, relative to hard surfaces unmodified with such nanoparticle systems. In some embodiments, actively curing the coating composition on the hard surfaces, including, but not limited to by radiative heating the air surrounding the hard surface with the coating thereon can be used to increase the durability of the hard surface coating.
Abstract:
Materials for coating, coating compositions, methods and articles of manufacture comprising a nanoparticle system or employing the same to impart surface modifying benefits for all types of inanimate hard surfaces are disclosed. In some embodiments, dispersement of nanoparticles in a suitable carrier medium allows for the creation of coating compositions, methods and articles of manufacture that create multi-use benefits to modified hard surfaces. These surface modifications can produce long lasting or semi-permanent multi-use benefits that include at least one of the following improved surface properties: wetting and sheeting, quick drying, uniform drying, soil removal, self-cleaning, anti-spotting, anti-soil deposition, cleaner appearance, enhanced gloss, enhanced color, minor surface defect repair, smoothness, anti-hazing, modification of surface friction, release of actives and transparency, relative to hard surfaces unmodified with such nanoparticle systems. Actively curing the coating composition on the hard surfaces, including, but not limited to by radiative heating the air surrounding the hard surface with the coating thereon can be used to increase the durability of the hard surface coating.
Abstract:
Sulfur dioxide is removed from flue gas by scrubbing with an alkaline solution, the thus-absorbed sulfur salts being removed with a weak-base ion-exchange resin. On exhaustion, the resin is regenerated with an ammoniacal solution and the effluent treated with lime to precipitate insoluble sulfur salts and free ammonia. The liberated ammonia is then recycled as a resin regenerant.