Abstract:
A micro-electromechanical variable capacitor with first and second capacitor plates spaced apart to define a gap therebetween. The first plate has two control electrodes and an active electrode. The second plate is movable relative to first plate when a voltage is applied to produce a potential difference across the control electrode and the second capacitor plate. This has the effect of varying the capacitance of the capacitor. The facing surface of at least one of the plates is formed in such a way that it has a roughened surface. The degree of roughness is sufficient to prevent the facing surfaces adhering together through stiction.
Abstract:
The present disclosure describes a Parylene micro check valve including a micromachined silicon valve seat with a roughened top surface to which a membrane cap is anchored by twist-up tethers. The micro check valve is found to exhibit low cracking pressure, high reverse pressure, low reverse flow leakage, and negligible membrane-induced flow resistance when used as a valve over a micro orifice through which flow liquid and gas fluids.
Abstract:
A modulator for modulating incident rays of light, the modulator comprising a plurality of equally spaced apart beam elements, each of which includes a light reflective planar surface. The elements are arranged parallel to each other with their light reflective surfaces parallel to each other. The modulator includes means for supporting the beam elements in relation to one another and means for moving the beam elements relative to one another so that the beams move between a first configuration wherein the modulator acts to reflect the incident rays of light as a plane mirror, and a second configuration wherein the modulator diffracts the incident rays of light as they are reflected therefrom. In operation, the light reflective surfaces of the beam elements remain parallel to each other in both the first and the second configurations and the perpendicular spacing between the reflective surfaces of adjacent beam elements is equal to m/4 times the wavelength of the incident rays of light, wherein m=an even whole number or zero when the beam elements are in the first configuration and m=an odd number when the beam elements are in the second configuration.
Abstract:
A method for forming sub-micron sized bumps on the bottom surface of a suspended microstructure or the top surface of the underlying layer in order to reduce contact area and sticking between the two layers without the need for sub-micron standard photolithography capabilities and the thus-formed microstructure. The process involves the deposition of latex spheres on the sacrificial layer which will later temporarily support the microstructure, shrinking the spheres, depositing aluminum over the spheres, dissolving the spheres to leave openings in the metal layer, etching the sacrificial layer through the openings, removing the remaining metal and depositing the microstructure material over the now textured top surface of the sacrificial layer.
Abstract:
A modulator for modulating an incident beam of light, the modulator comprising a plurality of equally spaced-apart elements, each of which includes a light-reflective planar surface. The elements are arranged parallel to each other with their light-reflective surfaces parallel to each other. The modulator includes means for supporting the elements in relation to one another and means for moving particular ones of the elements relative to others so that the moved elements transit between a first configuration wherein the modulator acts to reflect the incident beam of light as a plane mirror, and a second configuration wherein the modulator diffracts the light reflected therefrom. In operation the light-reflective surfaces of the elements remain parallel to each other in both the first and second configurations. The perpendicular spacing between the reflective surfaces of the respective elements is equal to m/4 .times. the wavelength of the incident beam of light, wherein m equals an even whole number or zero when the elements are in the first configuration and m equals an odd whole number when the elements are in the second configuration.