Abstract:
Systems and methods are delineated which, among other things, are for depositing a film on a substrate that is within a reaction chamber. In an exemplary method, the method may comprise applying an atomic layer deposition cycle to the substrate, wherein the cycle may comprise exposing the substrate to a precursor gas for a precursor pulse interval and then removing the precursor gas thereafter, and exposing the substrate to an oxidizer comprising an oxidant gas and a nitrogen-containing species gas for an oxidation pulse interval and then removing the oxidizer thereafter. Aspects of the present invention utilize molecular and excited nitrogen-oxygen radical/ionic species in possible further combination with oxidizers such as ozone. Embodiments of the present invention also include electronic components and systems that include devices fabricated with methods consistent with the present invention.
Abstract:
A method for manufacturing ozone ice that is improved for its storage stability is provided. In the method, ice 11 including oxygen gas g2 as gas bubbles b is produced and the produced ice 11 is irradiated with ultraviolet radiation, then the oxygen gas g2 in the ice 11 is ozonized to manufacture ozone ice 1.
Abstract:
Ozonated liquid production and distribution system are described. The systems use multiple ozone gas generators to create ozone gas from ambient air. The ozone gas is injected into water or fluid by multiple injectors to form the ozonated liquid.
Abstract:
The invention provides a power supply apparatus for supplying electric power to a capacitive load. The apparatus has a transformer, a positive half-period driver and a negative half-period driver supplying positive and negative half-periods of voltage to the first coil. The second coil forms an electric resonance circuit and supplies electric voltage to the load. Zero crossings of the voltage supplied to the first coil are determined from a third coil on the transformer, and alternation between positive and negative half-periods of voltage supplied to the first coil is done at the zero crossings of the voltage supplied to the first coil.
Abstract:
The invention provides a power supply apparatus for supplying electric power to a capacitive load. The apparatus has a transformer, a positive half-period driver and a negative half-period driver supplying positive and negative half-periods of voltage to the first coil. The second coil forms an electric resonance circuit and supplies electric voltage to the load. Zero crossings of the voltage supplied to the first coil are determined from a third coil on the transformer, and alternation between positive and negative half-periods of voltage supplied to the first coil is done at the zero crossings of the voltage supplied to the first coil.
Abstract:
A reaction vessel and an ozonated liquid dispensing unit are described herein. The unit produces and dispenses an ozonated liquid that may be used to clean and sanitize a variety of articles or used in conjunction with cleaning processes and other apparatus. The reaction vessel is incorporated into the unit to reduce bubbles of ozone gas and to break up bubbles of ozone gas in the ozonated liquid to provide a more effective and longer lasting cleaning and sanitizing solution.
Abstract:
An ozone generating apparatus having high reliability in which a glass tube can prevent from being damaged by melting a power feeding brush even if a large amount of short-circuit current flows. In an ozone generating apparatus using silent discharge, an alternating high voltage power is supplied from a power supply to a metal film formed in an inner wall of a glass tube by a power feeding brush comprising a brush shaft made of metal and a large number of metal thin wires fixed to the periphery of the brush shaft, the following equation satisfies. (D2/D1)≧1/{1+(1/20β)}, wherein ‘D1’ indicates an outer diameter of a bundle of metal thin wires, ‘D2’ indicates an outer diameter of the brush shaft and ‘β’ indicates the line density of metal thin wires on a surface of the brush shaft.
Abstract:
An oxidation treatment method of the present invention includes the step of bringing a solution having an ozone concentration of 120 to 500 mg/L into contact with a substance to be treated made of a combustible substance, thereby subjecting the substance to be treated and the surface thereof to an oxidation treatment. An oxidation treatment apparatus of the present invention includes: a dissolving means that dissolves an oxygen-ozone mixed gas in a fluorine-based solvent to form mixed fluid; an undissolved gas removal means that removes an undissolved gas from the mixed fluid to form a solution; and an oxidation treatment means that brings the solution into contact with a substance to be treated made of a combustible substance, thereby subjecting the substance to be treated and the surface thereof to an oxidation treatment.
Abstract:
A system for producing supercritical ozone includes a reactor having a first connecting port and a second connecting port, an ozone generator connected to the first connecting port, a fluid-driving device connected to the ozone generator and the second connecting port, and a fluid source connected to the reactor. The fluid-driving device is configured to circulate the gas in the reactor through the ozone generator. The fluid source is configured to increase the pressure in the reactor and thereby produce supercritical ozone.
Abstract:
An ozone gas source supplies a high pressure ozone gas mixture of an oxygen carrier gas having a high ozone gas concentration of 5-14% of ozone gas to a pulse storage tank. A programmable controller causes a valve means to open and transport the ozone gas mixture within the high pressure pulse storage tank into an injection point when pressure of the ozone gas mixture in the high-pressure pulse storage tank reaches a high discharge pressure site-specific set-point, and causes the valve means to close when pressure within the high pressure pulse storage tank drops and approaches a low pressure site-specific set-point. This process is repeated for injection of a gas pulse into second and subsequent injection points. The high concentration of ozone dissolves a high percentage of ozone into groundwater, producing enhanced oxidation of contaminants and the high gas pressure forces ozone into smaller pores, enhancing contact with contaminants.