Abstract:
The system is one in which submerged electrolytic cells provide electricity from the seawater, that directly energizes electro-chemical cells that produce oxygen and hydrogen. The entire system is configured so that micro bubbles of oxygen are quickly adsorbed as they rise toward the surface, increasing dissolved oxidation (DO) by adsorption into the water.
Abstract:
An object to be decontaminated contaminated with radioactive material, e.g., contaminated soil or water, is introduced into eluting solvent and dissolved, and the radioactive material is separated from the object to be contaminated by elution of the radioactive material into the eluting solvent. The eluting solvent containing the radioactive materials dissolved therein and the object to be decontaminated are separated into solid and liquid. The soil after solid-liquid separation and from which the radioactive material is removed is collected, and the eluting solvent after solid-liquid separation and a separated liquid containing contaminated water are introduced into an electrolysis tank and electrolyzed. Metal ions such as those of the radioactive materials are deposited on the cathode in the electrolysis tank. Hydrogen containing tritium generated in electrolysis is collected in the electrolysis tank. The hydrogen is moved to the outside of the electrolysis tank and trapped.
Abstract:
An electrolytic ion water generation method for generating strong electrolytic ion water having a pH value higher than a reference pH value through use of the same generation apparatus as an electrolytic ion water generation apparatus configured to generate electrolytic ion water having the reference pH value by setting an amount of raw water, which is to be supplied into a cathode chamber of an electrolytic bath, to be smaller than that of the raw water used for generating the electrolytic ion water having the reference pH value and setting generation conditions other than the amount of the raw water to the same generation conditions as those for generating the electrolytic ion water having the reference pH value. The raw water amount is set to a raw water amount calculated based on the following expression: pH=14+log [OH−].
Abstract:
An efficient combined advanced treatment method of electroplating wastewater is disclosed, which belongs to the technical field of electroplating wastewater treatment. The method includes: after pretreatments including cyanide breaking, dechromization and coagulating sedimentation, introducing the electroplating wastewater to a contact oxidation tank for biochemical treatment, and settling the effluent from the contact oxidation tank down in an inclined pipe of a secondary sedimentation tank to realize the separation of the sludge from water; charging the effluent to a coagulating sedimentation tank, and undergoing coagulating sedimentation with the aid of a flocculant and a coagulant aid added; feeding the effluent, as an influent, to a resin adsorption tank for adsorption with a magnetic resin; and after passing through a filter, flowing the effluent after adsorption to a fixed bed resin adsorption unit, so as to realize the discharge up to standard and recycle of the effluent.
Abstract:
A liquid treatment device (100) including: a structure (10) having a first surface (10a) and a second surface (10b), the structure including: a conductor (11) arranged between the first surface (10a) and the second surface (10b), the conductor including a first portion (11a) exposed to outside at the first surface (10a) and a second portion (11b) exposed to outside at the second surface (10b), and the conductor electrically connecting the first portion (11a) and the second portion (11b); and an ion transfer layer (15) arranged between the first surface (10a) and the second surface (10b), the ion transfer layer (15) arranged between the first surface (10a) and the second surface (10b), allowing hydrogen ions to move therethrough; and a first treatment tank (12) for holding a first liquid to be treated (17) therein, wherein the first surface (10a) of the structure (10) is located inside the first treatment tank (12).
Abstract:
A water treatment apparatus for producing activated water, including: a vessel having a water inlet and a water outlet and having a flange that extends outward from the upper end of the outer circumferential surface thereof; an insulating case having an empty space inside, the closed lower end of which is inserted into the vessel, and formed of an insulating synthetic resin; an insulated electrode bar inserted into the empty space of the insulating case; and a high-voltage generation unit installed on the upper end of the insulating case and configured to apply a high voltage to the electrode bar.
Abstract:
An industrial dishwasher includes a detergent station for washing serviceware with cleaning agent; a sanitising station for disinfecting the serviceware with sterilising agent; a neutralisation station connected to the detergent station, the sanitising station or both for deactivating the cleaning agent, the sterilising agent or both; and one or more conveyor chains connected to the detergent station, the sanitising station or both stations for carrying the serviceware to the detergent station, the sanitising station or both stations.
Abstract:
The present invention relates to a water softening device including: a resin chamber which has an ion exchange resin and softens hard water passing through the ion exchange resin; and electrodes which are arranged by placing the resin chamber therebetween and apply voltages to the resin chamber so as to soften the hard water, and which regenerates the ion exchange resin, wherein the ion exchange resin is a slightly acidic cation exchange resin and/or a weakly alkaline anion exchange resin. The present invention provides the water softening device capable of easily regenerating the ion exchange resin and repeating the softening-regenerating without using chemicals or the like while maintaining the performance of softening water, thereby enabling a continuous use thereof.
Abstract:
A method and an apparatus for retrofit hydrolization of seawater for production of halogen biocides in situ. A method for effecting an in situ generation of biocide as an aid in anti-biofouling of a device disposed in a volume of salt water includes a) associating a cathode electrode to the device; b) associating an anode electrode to the device with the anode electrode spaced apart from the cathode electrode; and c) hydrolyzing one or more components in the volume of salt water to generate a halogen biocide at the anode electrode with the biocide flowing from the anode electrode away from the cathode electrode as a biocide film, the film responsive to a physical arrangement of the associations of the electrodes with the device.
Abstract:
The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.