Abstract:
Described is a method and device for servicing the water of a swimming pool 1 by adding a disinfectant. The disinfectant is added by circulating the water through a branched circuit of the pool using a constant flow stirring pump 5. The operation of the pump is determined by the temperature of the water detected by temperature sensor 30 located within the branched circuit. The operating time of the pump is determined according to preset programs of a control box 3 which divide the operating time into time slot units of similar duration spread over several time ranges. The disinfectant addition can be carried out by pebble support 64 or by electrolysis within the branch circuit. Also, if the temperature drops below a minimal freeze risk value or above a maximal value, the pump is continuously operated and a warning is generated.
Abstract:
In an electrolytic water producing apparatus, an anode and a cathode in an electrolytic cell are periodically switched to reduce degradation thereof. The concentration of hypochlorous acid formed in the strong acidic liquid is measured through a concentration sensor, and a concentration variation pattern varying in a sawteeth pattern according to the switching of the anode and cathode is taken into a control device. A control pattern inversely corresponding to the sawteeth pattern is calculated by the controlling device. Electrolytic current or voltage to be supplied to the electrodes may be controlled according to the control pattern, or supply quantities of raw water or a chloride solution may be controlled by a flow rate controlling valve and a metering pump. Thus, although the polarities of the electrodes are switched, the strong acidic liquid containing hypochlorous acid with a constant concentration can be obtained.
Abstract:
A method and apparatus for automatically adjusting electrolytic production or feeding of a sanitizer such as halogen for treating a water body such as a swimming pool or spa. A microprocessor is responsive to sensors monitoring pH and temperature of the water body to predict demand for sanitizer which varies dependent on pH and temperature and direct a controller which automatically modifies the ON time during an ON/OFF cycle for the sanitizer production system in response to changing demand resulting from changing measurements in temperature and/or pH of the swimming pool water. The controller also modifies an ON/OFF cycle for a circulating pump when demand predicted by the microprocessor exceeds the capability of the sanitizer producer or feeder under an existing ON/OFF pump cycle.
Abstract:
An electrolytic magnetization device has an outer pipe, an anode tube, a diaphragm, a cathode tube, an insulating tube, and a water flow controller. A cover and a base seat cover an upper end of the outer pipe and a lower end of the outer pipe respectively. The cover has a water outlet. The base seat has a through hole and a water inlet. The anode tube is disposed in the outer pipe. The diaphragm is disposed in the anode tube. A hollow pipe is disposed in the diaphragm. The insulating tube is disposed in the hollow pipe. The water flow controller has an inlet joint connected to the water inlet, a main body disposed beneath the inlet joint, a flow control post having a water passage, a water pressure stabilizer, an automatic switch device, a water drain device, a first outlet joint, and a second outlet joint. The automatic switch device has a switch seat. A micromotion switch is disposed on the switch seat.
Abstract:
The apparatus includes a housing (10) defining a housing cavity (18) and at least one connector (15) for connecting the housing to an irrigation conduit (26) so that the housing cavity (18) is exposed to irrigation water flowing through the irrigation conduit (26). A first electrode (13) is positioned within the housing cavity (18) and is made from a growth inhibiting metal. A second electrode (14) is electrically isolated from the first electrode (13) and includes a surface exposed within the housing cavity (18) in a spaced apart relationship with respect to the first electrode (13). A voltage source (30) is connected to the first electrode (13) and to the second electrode (14) for applying an electric potential across the first and second electrodes. When the housing cavity (18) is filled with irrigation water passing through the irrigation conduit (26), the voltage source (30) applied to the first and second electrodes (13, 14) causes an electric current to flow between the electrodes, releasing ions of the growth inhibiting metal into the irrigation water. The method of the invention includes exposing both the first electrode (13) made of a growth inhibiting metal and the second electrode (14) which may or may not be made of a growth inhibiting metal to irrigation water flowing through an irrigation conduit (26). Once the electrodes are exposed to the irrigation water, the method includes applying an electrical potential across the electrodes to induce a current flow between the electrodes (13, 14) and release ions of the growth inhibiting metal into the irrigation water.
Abstract:
This invention is directed to apparatus for purification of water and liquids for human, agricultural and industrial consumption. A non-ferromagnetic metal body houses graphitized electrodes and a magnetic switching mechanism activated by fluid flowing through the system to change valences of mineral in the fluid and eliminate bacteria, thus purifying and softening the liquid.
Abstract:
An apparatus for destroying bacterial pathogens including at least one pair of electrodes secured in a housing configured to constrain flow of water through the region between the electrodes. In one construction, the electrodes are supported in a tube with sides of each member of an electrode pair conforming to the inner surface of the tube and electrode surfaces form a slotted space through which the water passes. The electrodes and space between the electrodes are also subject to a magnetic field which reduces rate of deposition of calacerous deposits on the electrode surfaces thereby extending the period of time between required cleaning of the electrodes. The electrodes can be simple slabs or screens or both. The electrodes are preferably tin, titanium, brass, iron or stainless steel.
Abstract:
The present invention relates to a central treatment equipment of drinking water for delivering tap water to a water electrolysis device to remove chlorine gas or antiseptic solution from tap water while to separate weak-base water with weak-acid water for respectively delivery into a drinking cylinder and use water cylinder. In said drinking cylinder having a heater for heating the drinking water, and such drinking water will be delivered to a storage cylinder when boiled and will be delivered to drinking tubing for drinking with the help of outlet pump. Water in said use water cylinder will be directly delivered to tap water tubing as cleaning water. In addition, the present invention has a CIP loop for automatic cleaning in a fixed period.
Abstract:
An electrolytic cell for generating a mixed oxidant that is rich in ozone is disclosed. The cell disassociates a brine solution to generate ozone and chlorine based oxidants. The improved cell design allows the ratio of ozone to the other oxidants to be optimized, thereby providing a more efficient sterilization solution. The ozone production is adjusted by adjusting the residence time of the brine solution in the cell and the orientation of the cell.
Abstract:
An object of the present invention is to provide a water electrolyzer, which has higher electrolyzing efficiency and smaller size than conventional ones. In an electrolyzing tank, at least three cylindrical electrodes, each of which has different polarity with respect to adjacent one, are arranged concentrically with cylindrical partitions. Surface area of the one cylindrical electrode, which is provided between other two, is equal to the sum of surface area of an outer face of the inner cylindrical electrode and that of an inner face of the outer cylindrical electrodes, so that maximum electrolyzing efficiency can be gained.