Abstract:
Metal cord with three layers (C1+C2+C3) of 3+M+N construction, rubberized in situ, comprising a first layer or central layer (C1) comprised of three wires of diameter d1 assembled in a helix at a pitch p1, around which central layer there are wound in a helix at a pitch p2, in a second layer (C2), M wires of diameter d2, around which second layer there are wound in a helix at a pitch p3, in a third layer (C3), N wires of diameter d3. The cord has the following characteristics (d1, d2, d3, p1, p2 and p3 being expressed in mm): 0.08≦d1≦0.50; 0.08≦d2≦0.50; 0.08≦d3≦0.50; 3
Abstract:
Provided are a steel cord for reinforcing rubber whose fatigue resistance is increased more than ever to enable achieving high durability that was not conventionally realized, and a pneumatic radial tire including the steel cord as a reinforcement member.In a steel cord for reinforcing rubber having a double-twist structure that includes a plurality of strands twisted together in the same direction with the same pitch and including a central structure and at least one outer layer, the central structure is composed of at least two strands being twisted around each other and each being composed of at least seven filaments being twisted together. In a steel cord for reinforcing rubber including at least three core strands being twisted together and at least six sheath strands being twisted together around the core strands, the core strands and the sheath strands are twisted in the same direction.
Abstract:
Method of manufacturing a metal cable having two layers (Ci, Ce) of construction M+N, comprising an inner layer (Ci) having M wires of diameter d1 wound together in a helix at a pitch p1, M varying from 2 to 4, and an outer layer (Ce) of N wires of diameter d2, wound together in a helix at a pitch p2 around the inner layer (Ci), the method comprising the following steps performed in line: a step of assembling the M core wires by twisting to form the inner layer (Ci) at a point of assembling; downstream of the point of assembling of the M core wires, a step of sheathing the inner layer (Ci) with a diene rubber composition called “filling rubber”, in the raw state; a step of assembling the N wires of the outer layer (Ce) by twisting around the inner layer (Ci) thus sheathed; and a step of twist balancing. Also disclosed is a device for implementing such a method.
Abstract:
A multi-layer cable having an unsaturated outer layer, comprising a core (C0) of diameter d0 surrounded by an intermediate layer (C1) of six or seven wires (M=6 or 7) of diameter d1 wound together in a helix at a pitch p1, surrounded by an outer layer (C2) of N wires of diameter d2 wound together in a helix at a pitch p2, N being less by 1 to 3 than the maximum number Nmax of wires which can be wound in one layer about the layer C1, this cable has the following characteristics (d0, d1, d2, p1 and p2 in mm): (i) 0.14
Abstract:
A steel cord for the reinforcement of rubber articles comprises a central basic layer comprised of 1 to 4 steel filaments, at least one coaxial layer arranged around the central basic layer and comprised of many steel filaments in which these filaments are twisted in the same twisting direction at the same twisting pitch, and a wrap filament spirally wound around the coaxial layer in the same twisting direction.
Abstract:
A steel cord comprises at least nine filaments which are twisted in substantially the same direction with substantially the same pitch. A coil formed by each filament has a diameter which is variable along the cord central line. Most of the filaments are interwined with one another without forming layers.
Abstract:
A steel cord for the reinforcement of rubber articles is disclosed, which comprises a central base structure composed of 1 to 4 steel filaments, and at least one coaxial layer composed of plural steel filaments arranged around the central base structure so as to adjoin them to each other, these steel filaments being twisted in the same direction at the same pitch. In the steel cord of this type, the steel filaments constituting the central base structure have the same diameter (dc), while at least one steel filament of the coaxial layer has a diameter (dso) smaller than the diameter (dc) of the steel filament in the central base structure.
Abstract:
A metal cord having a core comprising one or more filaments for the reinforcement of rubber articles comprising a plurality of bundles of grouped filaments wherein the direction of lay of the filaments in the bundles is the same as the direction of lay of the bundles in the cord, each of the filaments having been subjected to plastic torsional deformation, and the average length of lay of each bundle in the cord being substantially equal to the average length of lay of each filament in the bundles, and wherein at any cross-section of the cord the filament or filaments which comprise the core of the cord differ along the length of the cord and belong to the same or different bundles.
Abstract:
The cable includes continuous glass filaments which are helically plied in rovings at a constant helical angle from cable center to outer surface and bonded together in elastomeric material. When heated, thermal elongation of the filaments is opposed by simultaneous radially directed thermal volumetric expansion of the elastomeric material. Thus, with respect to overall cable length, thermal elongation of the cable is opposed by a simultaneous increase in cable cross sectional area such that thermal elongation effects are controllable, dependent upon the thermal expansion properties of the filament and elastomeric materials used, by controlling the helical angle at which the filaments are plied to obtain either expanding, contracting or constant length cables, as desired. Thermal contraction effects produced by cooling the cable also are controllable by controlling the helical angle. In some high tensile load cable applications, the helical angle additionally may be related to tensile load, depending upon the modulus of elasticity of the filaments used. The invention is particularly adapted to helically plied glass fiber cables which are thermally stable over a wide range of temperatures.
Abstract:
A composite glass fiber cable is disclosed having a negative linear coefficient of thermal expansion which is controllable by variation of the .Iadd.helical angle or angles of .Iaddend.twist of helically plied glass roving to substantially zero change in length over a wide variation in environmental temperatures under varying load conditions. .Iadd.It is possible, by controlling the helical angle and maintaining it constant from the cable center to outer surface, to control thermal elongation effects on the cable to obtain either expanding, contracting or constant length cables over a wide temperature range. .Iaddend.