Abstract:
A reinforcement strand (400) comprises a core (403) around which steel filaments (404) are twisted all with the same final lay length and direction. The steel filaments are arranged in an intermediate layer comprising N first steel filaments and an outer layer of 2N steel filaments circumferentially arranged around the intermediate layer. In the intermediate layer filaments will contact one another at a closing lay length that is determined by the number of steel filaments N in the intermediate layer, the diameter of the core and the diameter of the first steel filaments. By choosing the final lay length and direction equal to the between two and six times the closing lay length gaps will form between the intermediate layer filaments. The 2N outer layer filaments are further divided into a group of smaller (408) and a group of larger (406) diameter steel filaments.
Abstract:
A metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), said cord being characterized in that it has the following characteristics (d1, d2, p1 and p2 being in mm): 0.08
Abstract:
Metal cord of K×(L+M) construction. K elementary strands assembled in a helix, with pitch PK, each having a cord with L wire inner layer of diameter d1, and M wire outer layer of diameter d2, in a helix with pitch p2 around the inner layer; with (in mm): 0.10
Abstract:
A method of manufacturing a metal cord with two concentric layers of wires is provided. The cord includes an internal layer of M wires, M having a value from 1 to 4, and an external layer of N wires. The cord is rubberized from within in situ. That is, during manufacture of the cord, the cord is rubberized from inside. According to the method, the internal layer is sheathed with rubber or a rubber compound by passing the internal layer through an extrusion head, and the N wires of the external layer are assembled around the sheathed internal layer to form a two-layer cord rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer that is extruded in a molten state, and preferably is a thermoplastic styrene (TPS) type of thermoplastic elastomer, such as an SBS or an SIS block copolymer, for example.
Abstract:
A tire having a radial carcass reinforcement, including at least one layer of reinforcing elements, said tire comprising a crown reinforcement, which is itself covered radially with a tread, said tread being joined to two beads via two sidewalls, wherein at least 85% of the reinforcing elements of at least one layer of the carcass reinforcement are non-wrapped metal cords having in what is called the permeability test a flow rate of less than 20 cm3/min, and in that at least 5% of the reinforcing elements of said at least one layer of the carcass reinforcement are cords comprising at least one strand consisting of textile multifilament yarns.
Abstract:
Metal cord (C-1) with three layers (C1, C2, C3), which is rubberized in situ, comprising a core or first layer (10, C1) of diameter d1, around which there are wound together in a helix at a pitch p2, in a second layer (C2), N wires (11) of diameter d2, N varying from 5 to 7, around which there are wound together in a helix at a pitch p3, in a third layer (C3), P wires (12) of diameter d3, the said cord being characterized in that it has the following characteristics (d1, d2, d3, p2 and p3 being expressed in mm): 0.08≦d1≦0.40; 0.08≦d2≦0.35; 0.08≦d3≦0.35; 5π(d1+d2)
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), rubberized in situ, of M+N+P construction, comprising a first, internal, layer (C1) consisting of M wires of diameter d1, M varying from 1 to 4, around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps which are performed in line: an assembling step by twisting the N wires around the first layer (C1) in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” of M+N construction; downstream of the assembling point, a sheathing step in which the M+N core strand is sheathed with a rubber composition named “filling rubber” in the uncrosslinked state; an assembling step in which the P wires of the first layer (C3) are twisted around the core strand thus sheathed; a final twist-balancing step. Also disclosed is a device for implementing such a method.
Abstract:
A steel cord (50) comprises a core layer and an outer layer. The core layer comprises a number of first steel filaments (10) and the outer layer comprises a number of second steel filaments (20). The outer layer is helically twisted around the core layer. The first steel filaments have a twisting pitch greater than 310 mm. At least one of the first steel filaments (10) is wavy preformed in one plane. At least one of the second steel filaments (20) is polygonally preformed.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.