Abstract:
A drive mechanism includes a transmission including a pinion centered at an axis, a differential mechanism centered at a second axis forward of the axis, driveably connected to the pinion through a gear wheel meshing with the pinion, and a power take-off mechanism centered at a third axis rearward of the axis, driveably connected to the pinion, including a clutch that alternately opens and closes a drive connection to the pinion.
Abstract:
A hybrid drive of a motor vehicle comprising a combustion engine having a drive shaft, at least one electric machine, a manual transmission having input shafts (GE1, GE2) and an output shaft. Shaft (GE1) couples the combustion engine drive shaft and the electric machine can drive shaft (GE2). For efficient driving with the combustion engine and/or electric machine optionally decoupled or coupled, and for a reduction of size, shafts (GE1, GE2) are coaxially located one after the other, the output shaft coaxially surrounds one of the shafts (GE1, GE2) and planetary gearsets are disposed coaxially behind one another, each having an input and output element. The combustion engine can be coupled alternately to shaft (GE2), via a first shift element or to the input element of the first planetary gearset, via a second shift element. The output elements of the planetary gearsets are connected to the output shaft.
Abstract:
A continuously variable transmission includes a variator unit having a variator input shaft and a variator output shaft, and a first, a second, a third and a fourth planetary gear set, wherein each of the first and second planetary gear sets has a first member operatively connected to a common transmission input shaft, which transmission input shaft is common to the first and second gear sets, and a second member operatively connected to an output shaft, which output shaft is common to the first and second gear sets. Each of the first and second planetary gear sets further includes a third member, and the third planetary gear set has a first, a second and a third member.
Abstract:
A transmission and control method are disclosed which ensure proper stroke pressure and minimize torque transients during a shift event. The transmission includes a clutch having a torque capacity based on a fluid pressure, a torque sensor adapted to measure a torque value that varies in relationship to the torque capacity, and a controller. The method includes varying the fluid pressure around a predetermined value, measuring a resulting torque difference with the torque sensor, and adjusting a clutch control parameter if the resulting torque difference is less than a threshold value.
Abstract:
A planetary gear train of an automatic transmission includes: a first torque-receiving shaft; a second shaft parallel with the first shaft; a first planetary gear set on the first shaft having a first, second and third rotation elements operated as a fixed or output element, directly connected to the first shaft and operated as an input element, and operated as a selective output element, respectively; a compound planetary gear set including a second planetary gear set and a third planetary gear set, and having a fourth, fifth, sixth and seventh rotation elements, selectively connected to the second and third rotation elements, connected to an output gear, selectively connected to the first rotation element, and selectively connected to the third rotation element, respectively; three transfer gears forming externally-meshed gears; and frictional elements selectively interconnecting the rotation elements or selectively connecting the rotation elements to a transmission housing.
Abstract:
To disable engine braking so as to act at a given shift stage in a D range selected manually, and to enable engine braking so as to act at the given shift stage in an L range, an automatic transmission includes first and second meshing mechanisms. The transmission further includes a one-way clutch, a first linkage for meshing the first meshing mechanism in synchronism with N-to-D movement, and a second linkage for meshing the second meshing mechanism in synchronism with D-to-L movement. A rotating part permits a driving force to be transmitted from an input member via the one-way clutch with the first meshing mechanism meshed in the D range and permits a driving force to be transmitted from the input member, without transmitting via the one-way clutch, with the first and second meshing mechanisms each meshed in the L range.
Abstract:
A transmission and control method are disclosed which ensure proper stroke pressure and minimize torque transients during a shift event. The transmission includes a clutch having a torque capacity based on a fluid pressure, a torque sensor adapted to measure a torque value that varies in relationship to the torque capacity, and a controller. The method includes varying the fluid pressure around a predetermined value, measuring a resulting torque difference with the torque sensor, and adjusting a clutch control parameter if the resulting torque difference is less than a threshold value.
Abstract:
A transmission is has an input member, an output member, a first planetary gear set assembly, a second planetary gear set assembly, a plurality of coupling members and a plurality of torque transmitting devices. The second planetary gear set assembly is a stacked planetary gear set having a first, a second, a third, a fourth and a fifth member and the first planetary gear set assembly has a first, a second, a third and a fourth member. The torque transmitting devices include clutches and brakes.
Abstract:
The present disclosure provides an automatic transmission having an input adapted to couple to a torque-generating mechanism and an output coupled to the input. The transmission also includes a first rotating torque-transferring mechanism disposed along a first torque path and coupled to the input. A second rotating torque-transferring mechanism is disposed along a second torque path and is coupled to the input independent of the first torque-transferring mechanism. The transmission includes a plurality of stationary torque-transferring mechanisms, each of which is disposed between the input and output. The transmission includes a first planetary gearset, a second planetary gearset, a third planetary gearset, and a fourth planetary gearset, where each gearset includes a sun gear, a ring gear, and a carrier assembly. Moreover, the ring gear of the third planetary gearset is coupled to the carrier assembly of the second planetary gearset and the carrier assembly of the fourth planetary gearset.
Abstract:
A transmission assembly for use in a motor vehicle is provided. The transmission assembly has a case for housing components of the transmission and an electromechanical device operable to convert mechanical energy to electrical energy. The electromechanical device is disposed within the transmission case. The case may have a main housing portion and a bell housing portion, with the electromechanical device housed in the main housing portion, in some variations. A transmission shaft may be rotatably supported within the case and configured to be connected to an engine of the motor vehicle. A connecting device may continuously interconnect the electromechanical device with the transmission shaft.