Abstract:
A basket for incinerating waste inside an incinerator for a duration longer than fifteen minutes with no need for waste to be molten earlier, particularly when waste is introduced inside the incinerator. The basket includes mainly of a glass fiber envelope: it is preferably stiffened by a lightweight metal structure located inside or outside the envelope or built into it. A gripping handle is installed on top of the assembly that is stiffened at the top by a metal tube to which a lightweight metal structure is fixed and by a base formed from a drip pan fixed to the base of the lightweight metal structure.
Abstract:
A gasifier for disposing of biomass and other waste materials through a gasification and combustion process. The gasifier includes a primary chamber for receiving and holding biomass or a selected waste product. A heat transfer chamber is disposed adjacent the primary chamber. A burner is associated with the gasifier for generating heat and heating the gasifier during various phases or portions of the gasification and combustion process. In the gasification process, the heat transfer chamber is heated and the heat is transferred to the primary chamber where the biomass is heated. During the gasification process, biomass material is volatized generating fumes and gases that later react and release heat through exothermic reactions. Once the gasification process has been concluded, the process enters a combustion phase where the biomass is actually burned. During the gasification-combustion phases, the amount of heat supplied by the burner will vary. Generally the amount of energy or heat supplied by the burner will decrease throughout the process because the biomass itself will supply substantial amounts of heat through exothermic reactions.
Abstract:
The gasifier operates to mix a start up heat source with crude syngas combustion for driving gasification of waste. Combustion flue gas can be maintained above 650° C. until reaching a quench to prevent formation of dioxins. Excess heat is liberated through a heat recovery unit. The gasifier can operate in a batch mode to process small batches of waste efficiently for small installations, such as ships, apartment buildings, hospitals and residences.
Abstract:
The present document describes a catalyst to initiate microwave pyrolysis of waste, a process for the microwave pyrolysis of waste using the catalyst, as well as a microwave pyrolysis system.
Abstract:
A system for generating energy from biomass uses an arc-produced gas, either in the primary burn process to achieve higher burning temperatures, in a secondary after-burn process to reduce pollutants, or in both the primary burn process and after-burn process. The use of arc-produced gas results in increased efficiency, reduced emissions, and additional heat energy. Heat produced is used, for example, to generate electricity. In some embodiments, the arc-produced gas is combined with another fuel such as oil or natural gas for desired burn characteristics and/or for economic reasons.
Abstract:
Solid fuel can be converted into a clean hot flue gas with a low content of volatile organic compounds (VOC's), NOx and dust, and clean ash with a low carbon content by means of a stage-divided thermal reactor, where the conversion process of the solid fuel is in separate vertical stages (from below and up): ash burn-out, char oxidation and gasification, pyrolysis, drying, and a gas combustion stage where gas from the gasifier is combusted.
Abstract:
A method and apparatus for treating waste material having organic components and radioactive agents. The method including the steps of gasifying the waste material at temperature between 600-950° C. in a reactor to form a gaseous material. The gaseous material is cooled to a temperature between 300-500° C., after the cooling the solid fraction including the radioactive agents are removed.
Abstract:
Systems and methods are disclosed for pyrolysis of waste feed material. Some systems include a main retort and a secondary retort. Syngas is produced by pyrolysis in the main retort, and is then mixed with combustion air and ignited, in some cases to produce energy. Carbon char travels to the secondary retort and is exhausted from the system through an airlock.
Abstract:
The various embodiments herein provide an improved biomass based down draft gasifier for producing electrical energy. The gasifier comprises a reactor with double walled construction having an annular space between outer and inner shells. The annular space houses multiple helical guide vanes welded to the inner shell. The reactor is covered with a top cover assembly. An air inlet manifold is provided for directing the controlled air into the reactor through the air inlet nozzles. An automatic start system is provided for controlling the combustion of inlet fuel done with a spark plug. The gasifier comprises a throat which permits the ashes and charcoal of burnt fuel to drop into the bottom of the reactor. The gas separation holes are provided at the bottom of the reactor to separate the product gas from the charcoal. The product gas is taken out from an output pipe.
Abstract:
The invention relates to chemical technology and equipment, in particular to apparatuses of processing of solid household and industrial waste, as well as other carbon-containing feedstock into combustible gasification gas and methods for pyrolysis and downdraft gasification process.