Abstract:
A sterilization system consisting of a mobile emitter, a sensing subsystem and a data logging subsystem is described. The emitter has one or more UV emitting lamps or devices. The sensing system comprises at least one remote UV sensor and at least one door sensor. The door sensor comprises a safety shut off door detector and may contain an emergency stop detector and arming detector to protect people from being exposed to UV energy. The system has a remote control for starting, stopping and setting system parameters which include but are not limited to: treatment time, dosage, room size, room number, unit number, floor, facility name, operator name, operator identification number, password, default dosage values, dosage, and patient identification number. The number of treatments per unit of time can be maximized because of the use of incident light measurement.
Abstract:
An optical sensing device includes a silicon-on-insulator (SOI) substrate a semiconductor support substrate, an insulating layer located on the semiconductor support substrate, and a semiconductor layer located on the insulating layer. The optical sensing device further includes a visible light sensor located in the semiconductor support substrate, and an ultraviolet ray sensor located in the semiconductor layer.
Abstract:
A radiation failure inspecting method includes acquiring read data when a scanner reads a radiation surface of a radiation unit in a state where a reading surface of the scanner faces the radiation surface of the radiation unit and the radiation unit emits light; acquiring a value corresponding to a radiation energy of the light from the radiation unit by integrating the read data in a direction corresponding to a predetermined direction on the read data; and determining that a radiation failure occurs in the radiation unit when the value corresponding to the radiation energy of the light is equal to or less than a threshold value.
Abstract:
Systems and methods for actuating a tactile stimulation in response to detecting a specific event associated with exposure to a particular environmental or physiological condition are described herein. A tactile stimulation device, according to one of several implementations, comprises a sensing layer, an actuating layer, and an adhesive layer. The sensing layer, which is sensitive to exposure to a particular condition, is configured to sense when a specific event associated with exposure to the particular condition occurs. The actuating layer is configured to provide a tactile stimulation to a human subject when the specific event occurs. The adhesive layer is configured to affix the sensing layer and actuating layer with respect to a surface portion of the skin of the human subject such that the human subject can sense the tactile stimulation provided by the actuating layer. The sensing layer, actuating layer, and adhesive layer can be bonded together to form a relatively flat structure.
Abstract:
A device includes a substrate having a first surface. A piezoelectric nanowire is disposed on the first surface of the substrate. The piezoelectric nanowire has a first end and an opposite second end. The piezoelectric nanowire is subjected to an amount of strain. A first Schottky contact is in electrical communication with the first end of the piezoelectric nanowire. A second Schottky contact is in electrical communication with the second end of the piezoelectric nanowire. A bias voltage source is configured to impart a bias voltage between the first Schottky contact and the second Schottky contact. A mechanism is configured to measure current flowing through the piezoelectric nanowire. The amount of strain is selected so that a predetermined current will through the piezoelectric nanowire when light of a selected intensity is applied to a first location on the piezoelectric nanowire.
Abstract:
A unit, system, and method for disinfecting or sterilizing the entire surface area of an item. The system includes at least one ultraviolet light source producing ultraviolet light for disinfecting the item. In addition, the system including a cavity housing the ultraviolet light source, the cavity having a reflective interior for redirecting light produced by the at least one ultraviolet light source. Furthermore, the system including a shelf positioned above a bottom portion of the cavity to support the item, the shelf capable of passing light produced by the at least one ultraviolet light source there through to disinfect an entire surface area of the item.
Abstract:
This invention relates to an irreversible indicator for detecting oxidizing agents, or in particular an oxygen indicator, comprising at least one redox-sensitive dyestuff, at least one semiconductor material and at least one electron donor. This indicator is activated by exposure to light of about 200-400 nm. The invention also relates to UV light detector.
Abstract:
Described herein is device configured to be a solar-blind UV detector comprising a substrate; a plurality of pixels; a plurality of nanowires in each of the plurality of pixel, wherein the plurality of nanowires extend essentially perpendicularly from the substrate.
Abstract:
Disclosed is an open-path optical sensor. Typically, the optical sensor directs UV radiation from a source assembly to a detector assembly along a monitoring path. The source assembly emits UV radiation corresponding to a signal channel and to a reference channel. The detector assembly detects UV radiation corresponding to the signal channel and to the reference channel. The detector assembly is in communication with a data acquisition system, which compares the intensity of the detected UV radiation corresponding to the signal channel to the intensity of the UV radiation corresponding to the reference channel.
Abstract:
The light sensor according to an exemplary embodiment of the present invention is a multi-function light sensor that is equipped at low cost with both an ultraviolet light sensor and a visible light sensor and suppresses leak current between adjacent elements on the same substrate. The light sensor is equipped with a SOI substrate, formed from a silicon oxide insulating film and a silicon semiconductor layer made up from single crystal silicon, on a silicon substrate. Photodiodes PD1 and PD2 are formed on the silicon substrate, and a photodiode UV-PD, and main portions (source, drain and channel regions) of a MOSFET configuring a control circuit, are formed in the silicon semiconductor layer on the insulating film.