Abstract:
A calibration standard for determining an intensity decay related to an evanescent field generated close to the interface between a sample to be tested and a substrate on which the sample is to be deposited, preparation and analysis methods and use thereof.
Abstract:
The invention relates to a system for monitoring air quality in an environment, including at least one mobile robot (20) in the environment, a docking station (10) placed in the environment and including a parking area for receiving the robot, air quality sensors on board the mobile robot, air quality sensors fitted in the docking station, and a calibration manager for collecting measures carried out by at least one air quality sensor on board the mobile robot (20) while the mobile robot is received in the parking area of the docking station (10), and measures carried out at the same time by another air quality sensor fitted in the docking station, of the same type as the on-board air quality sensor.
Abstract:
A carbon concentration can be measured using a small number of calibration curves even for a silicon wafer containing oxygen at a high concentration. A calibration curve determination method includes determining calibration curves using data sets each including a plurality of data, each data including irradiation dose, oxygen concentration, carbon concentration, and luminescence intensity, the data of each data set having the same irradiation dose and the same oxygen concentration, and the data sets being different in at least one of the irradiation dose and the oxygen concentration, selecting one or more combinations each being a pair of the calibration curves which are equal to each other in the irradiation dose and different from each other in the oxygen concentration, and obtaining a difference between slopes of the paired calibration curves on a log-log plot for each combination.
Abstract:
In accordance with certain embodiments, a smoke detector determines the presence of smoke particles outside its housing based on measurements of light detected at different wavelengths and corrected based on an ambient light level.
Abstract:
Systems and methods for detecting a biological analyte are provided. The biological analyte can be, for example, cortisol. Detection can be achieved without external labels/mediators. Microfluidic systems can be incorporated into the optical sensor for enhanced point-of-care applications. The sensor can be used in a variety of low-power electronics for wearable applications.
Abstract:
One or more techniques and/or systems are provided for waste object detection. For example, a waste alert component is configured to emit ultraviolet light towards a waste detection zone, such as a bathroom floor or countertop. If a waste object, such as a paper towel or other object with a fluoresce property, exists within the waste detection zone, then the waste alert component may detect an increase in light due to the waste object fluorescing visible light in response to the ultraviolet light. If the increase in light intensity exceeds a detection threshold, then the waste alert component may provide a waste detection alert that the waste object exists within the waste detection zone (e.g., a message may be sent to a housekeeper that paper towel waste in on the bathroom countertop).
Abstract:
According to one aspect of the present disclosure an apparatus for processing of a material on a substrate is provided. The apparatus includes a vacuum chamber and a measuring arrangement configured for measuring one or more optical properties of the substrate and/or the material processed on the substrate, the measuring arrangement including at least one sphere structure located in the vacuum chamber.
Abstract:
In accordance with certain embodiments, a smoke detector determines the presence of smoke particles outside its housing based on measurements of light detected at different wavelengths and corrected based on an ambient light level.
Abstract:
In accordance with certain embodiments, a smoke detector determines the presence of smoke particles outside its housing based on measurements of light detected at different wavelengths and corrected based on an ambient light level.
Abstract:
A method of deriving correction for instrument-to-instrument variations in the illumination band centroid wavelengths and wavelength band shapes of the optical systems of clinical chemistry instruments includes the steps of determining the centroid wavelength and wavelength band shape of a light source used in the optical system of a clinical chemistry instrument to provide a determined wavelength band shape and centroid wavelength, comparing the determined wavelength band shape and centroid wavelength with a known reflection density or absorbance wavelength spectrum of a specific type of chemical reagent test to provide a correction value, and calculating the correction value, which is to be used to modify a reflection density or absorbance measurement taken by the instrument of a reagent test of the a specific type of chemical reagent test.