Abstract:
The disclosure pertains to a coupled plant process for the production of urea and melamine, with a urea synthesis section with HP CO2 stripping, and with a part of the CO2 feed supplied to a recovery section.
Abstract:
The present invention relates, in general, to an apparatus for an electrical power feedthrough suitable for use in high temperature, high pressure, and/or corrosive environments, such as, for example, within ammonia cracking (i.e., dissociation) systems. The present invention is fabricated from conductive nickel alloys which have high melting temperatures, and which are resistant to corrosion at high temperatures, as well as non-conductive ceramic materials which provide electrical insulation between the systems that feedthrough is coupled to.
Abstract:
The machinery and methods disclosed herein are based on the use of a specialized extruder configured to continuously convey and plasticize/moltenize selected lignocellulosic biomass and/or waste plastic materials into a novel variable volume tubular reactor, wherein the plasticized/moltenized material undergoes reaction with circumferentially injected supercritical water—thereby yielding valuable simple sugar solutions and/or liquid hydrocarbon mixtures (e.g., “neodiesel”), both of which are key chemical commodity products. The reaction time may be adjusted by changing the reactor volume. The machinery includes four zones: (1) a feedstock conveyance and plasticization/moltenization zone; (2) a steam generation and manifold distribution zone; (3) a central supercritical water reaction zone; and (4) a pressure let-down and reaction product separation zone. The machinery and methods minimize water usage—thereby enabling the economic utilization of abundant biomass and waste plastics as viable renewable feedstocks for subsequent conversion into alternative liquid transportation fuels and valuable green-chemical products.