Abstract:
The invention concerns an apparatus (1) for the dispersion of an expansion gas even in supercritical conditions, e.g. carbon dioxide, in a reactive resin, of the kind in which a reaction chamber having an input (27) for gas and an input (37) for resin is provided. Advantageously, the chamber is a dispersion and containment chamber made into a casing (2) of predetermined high resistance susceptible to sustain high pressure and is divided into two sections (6,7) by a head (14) of a dispersion and mixing cylinder-piston group (4) in fluid communication between themselves by means of at least one pouring passage (31, 36, 32, 39) provided with a static mixer (38), motor means (3) being provided for piston (34) control of said mixing cylinder-piston group (4). The invention also concerns a process for the formation of a polyurethane foam starting with the dispersion of carbon dioxide, even supercritical, in a reactive resin in which at least one initial dispersion and mixing controlled phase of the two components is provided in a dispersion and containment chamber under pressure divided into two sections (6,7) by a head (14) of a cylinder-piston mixing group (4) in fluid communication between themselves by means of at least one pouring passage (31, 36, 32, 39) provided with a static mixer (38) and in which adduction, dispersion and mixing occurs under high pressure (at least greater than 75 bar).
Abstract:
The invention relates to a high-pressure mixing, dosing and recirculation head for injection or casting reaction molding, said high-pressure mixing, dosing and recirculation head comprising a head body, a mixing chamber, obtained in the head body wherein a valve element or mixing valve slides and in fluid communication with a supply duct, and a self-cleaning element comprising a scraping portion, said self-cleaning element being structured to slide in said supply duct, as well as comprising an apparatus for controlling and commanding mixing, supply and recirculation comprising a plurality of sensors and transducers mounted on board of the head body and of the components parts of the head connected thereto to detect and transform representative physical quantities of at least one operational status of said high-pressure mixing, dosing and recirculation head into electrical signals and an electronic control and storing system adapted to synchronously control and scan said sensors and transducers and adapted to receive and process said electrical signals indicative of said at least one operational status, at the beginning and during the operational phases of said high-pressure mixing, dosing and recirculation head to compare them with each other and with electrical signals representative of a predetermined reference operational status. The invention also relates to a high-pressure mixing, dosing and recirculation method for injection or casting reaction molding.
Abstract:
A method for forming a self-regenerating seal in a mixing chamber of a high-pressure mixing apparatus for polymeric components suitable for providing a reactive mixture for a polymerizable resin. An annular sealing element is provided in a circular housing seat inside the mixing chamber, in a sealing zone downstream the injection holes for the polymeric components; worn and/or torn parts of the annular sealing element are automatically regenerated by the same reactive mixture delivered during operation of the mixing apparatus. A high-pressure mixing apparatus with self-regenerating sealing element is also claimed.
Abstract:
A high-pressure mixing apparatus for producing and discharging a composite material resulting from a reactive mixture of at least a first and a second chemical components and from a filler material. The apparatus includes a main body, provided with a discharge duct for the composite material, at least one high-pressure mixing chamber for the chemical components and a first cleaning member axially displaceable between a forward and a rearward position within the discharge duct. The apparatus also comprises a second cleaning member with a control device selectively actuable to sequentially move the first and the second cleaning member between the rearward position, in which the first cleaning member opens the discharge duct, and the forward position in which the facing annular surfaces of the discharge duct and the second cleaning member are mutually abutting to eject the residual reactive mixture and close the exit port of the mixing chamber.
Abstract:
A plant for molding articles in polyurethane material; the plant comprises a plurality of motorized mold supporting carriages independently movable along a suspended monorail running along a production line. Each carriage comprises a mold supporting press for opening and closing a mold provided with independent pneumatic control means supported by the same carriage; the control means are connectable to a source of fluid under pressure in pre-established working positions along the production line; each carriage also comprises a drive unit connected to electrical power supply bus bar along the monorail and a peripheral control unit operatively connected to a central logic unit by dialogue conductors provided on the monorail.
Abstract:
A method is disclosed for preparing and dispensing a mixture obtained by mixing at least one first chemically reactive component and at least one second chemically reactive component containing a dispersed solid material by a high pressure mixing device comprising a mixing chamber for mixing the components, in which a valve member is slidable, in particular a slide-valve, provided with longitudinal slots for recirculating the components to respective storage tanks. The method provides removing from at least one tank, a dosed quantity of the at least second chemically reactive second component to with filler material is added; recirculating the second component through the slots of the slide-valve for a period of time that is comparatively very reduced with respect to a recirculating step of the at least first component through the slide-valve. An apparatus for preparing and dispensing the mixture is also disclosed.
Abstract:
A high-pressure mixing device adapted to form a polymeric mixture from the reaction of two or more reactive liquid components or resins, comprises a head-body with a mixing chamber having an inner cylindrical surface with inlet and outlet openings for injecting and recirculating reactive components; a duct for delivering the mixture, a valve body with recirculation longitudinal slots; the delivery duct, of the self-cleaning type, is a single-piece tubular element, insertable into a hole passing through the head-body, having an intermediate transversal hole aligned with the mixing chamber with a diameter greater than a diameter of the mixing chamber for avoiding protrusions of the walls of the transversal hole from forming inwardly of the mixing chamber of the head-body. Sealing elements duly arranged between the coupling interfaces of the various components prevent the leakage of polymeric mixture and lubricant liquid. There is also disclosed a related method.
Abstract:
A method and high-pressure mixing device for co-injection of polymeric reactive components, in particular for polyurethane and epoxy mixtures. The polymeric components are supplied in a common pressure chamber where they flow at a same pressure and in an unmixed state into a forwardly converging fore portion of the pressure chamber, and through a settable co-injection orifice to be co-injected, in the unmixed state, into a mixing chamber transversely oriented to the pressure chamber. The settable co-injection orifice consists in an elongated restriction that longitudinally extends on a side wall of the mixing chamber orthogonally oriented to an intersecting the forwardly converging fore portion of the pressure chamber; a first cleaning member and a second cleaning member are sequentially reciprocable in the pressure chamber to eject the remaining unmixed polymeric components, respectively in the mixing chamber to eject the remaining mixture, and stop elements are provided to set an open section of the elongated restriction, by adjustably stopping the fore end of the cleaning member for the mixing chamber, in respect to the same elongated restriction of the co-injection orifice.
Abstract:
A high-pressure self-cleaning mixing apparatus adapted to mix at least first and second reactive polyurethane-forming components and feed the mixed components to a mold is disclosed. The apparatus includes at least a mixing chamber, first and second feed passages, first and second recycle passages, and a cleaning member having at least first and second longitudinally-extending recycle grooves spaced from each other. The cleaning member is movable between an open position in which the first feed passage radially feeds the first polyurethane-forming component to the mixing chamber and a closed position in which the first longitudinally-extending recycle groove communicates the first feed passage with the first recycle passage to recycle the first polyurethane-forming component instead of feeding the first polyurethane-forming component to the mixing chamber. The second feed passage may be communicated with a longitudinally-extending passage of the cleaning member to permit the second polyurethane-forming component to be fed into the mixing chamber along an axial direction of the mixing chamber. A valve member may be provided to prevent the flow of the second polyurethane-forming component to the mixing chamber by recycling the second polyurethane-forming component to the second recycle passage. Spacing between the first and second grooves seals the first feed and recycle passages from the second feed and recycle passages.
Abstract:
A metering device for feeding liquids, in particular chemical components for the production of polyurethane mixtures in a high-pressure mixing head.The device comprises at least a first and a second metering unit of the type having a cylindrical chamber in which a plunger slides to displace a pre-established volume of liquid during its stroke and to feed it to the mixing head. The plunger is connected to a worm screw control device, in which the worm screw control devices of the metering units are interconnected by a mechanical drive actuated by a driving motor; one or more revolution variators can be disposed in the mechanical interconnecting transmission in order to vary the ratios between the speeds of the plungers and, therefore, the quantities metered in relation to the stochiometric ratios between the liquids to be mixed.