Abstract:
A pivot door hinge assembly includes a clamp housing, wedge, and base plate. The clamp housing is preferably generally U-shaped and has an interior channel. The interior channel is tapered such that one end of the interior channel is wider than a second end. The wedge is located in the interior channel of the clamp housing and in between one side of the glass door and an inner surface of the clamp housing. The wedge is also tapered. The set screw is located at one end of the clamp housing and is used to urge the wedge from that end toward the other end. As the wedge moves away from the wider end of the interior channel, this causes the wedge to move closer to the glass door and apply greater pressure against the glass door and an interior side of the clamp housing. This is because the tapered interior channel forces the wedge away from one side of the clamp housing toward the other side. A base plate having a raised portion may also be used. The raised portion extends at least slightly above a surface of the base plate and mates with a recessed portion of a clamp housing.
Abstract:
A wall panel system including a retractable floor anchor for converting a wall panel assembly between a sliding configuration and a pivoting configuration. The wall panel system includes a sliding wall panel assembly and a pivoting wall panel assembly that may be configured to slide or pivot. A retractable floor anchor configured to be included in the pivoting wall panel assembly includes retractable spindle that is coupled to a base member by a linear actuator. The spindle is rotatably coupled to a door closer included in the retractable floor anchor.
Abstract:
An electronic egress system includes at least one door, each door having a handle defining an interior area, an actuator and an exit control assembly including a switch assembly located substantially within the handle's interior. The handle is movable relative to the actuator such that motion of the handle relative the actuator changes the switch assembly from a first switch state to a second switch state.
Abstract:
A system of aligning a panel comprising a base shoe having two side walls and a concave base surface and a mounting pad having a substantially flat bottom surface and a convex top surface corresponding to the concave base surface of the base shoe. When the mounting pad is disposed beneath the concave base surface of the base shoe the system achieves vertical plumb. Each side wall of the base shoe may define at least one groove therein.
Abstract:
A door lock assembly for a door. The door lock assembly includes a handle assembly, a latch bolt assembly disposed within a portion of the handle assembly and a mounting assembly that movably couples the handle assembly to a door panel member. The latch bolt assembly includes a movable latch bolt that translates relative to the handle assembly between an extended position and a retracted position.
Abstract:
A wall panel system including a retractable floor anchor for converting a wall panel assembly between a sliding configuration and a pivoting configuration. The wall panel system includes a sliding wall panel assembly and a pivoting wall panel assembly that may be configured to slide or pivot. A retractable floor anchor configured to be included in the pivoting wall panel assembly includes retractable spindle that is coupled to a base member by a linear actuator. The spindle is rotatably coupled to a door closer included in the retractable floor anchor.
Abstract:
A deadbolt device for a door is disclosed that has a linkage assembly enclosed within a handle. The linkage assembly extends from a first end to a second end and is moveable from a locked position to an unlocked position. A lock housing extends through the door and includes a guide channel that extends from an interior side of the lock housing to an exterior side of the lock housing. A locking member, at least a portion of which is in the guide channel, is operatively connected to the linkage assembly and is moveable from a locked position to an unlocked position, which correspond to those of the linkage assembly. A biasing mechanism is operatively connected to the locking member and biases the locking member to its locked position. A dogging member is moveably connected to the lock housing such that the dogging member can move from an undogged to a dogged position.
Abstract:
A sliding door panel assembly comprises at least one movable door panel and a roller assembly. The roller assembly includes at least one roller mounted on an axle and at least one roller clamping plate receiving the axle. The vertical load of the door panel is substantially borne by the at least one roller. A track may be disposed beneath the roller assembly, and the roller is movable along the track. The door panel is movable by moving the roller along the track.
Abstract:
A glass locking system of locking a glass panel within a base shoe having side walls, comprising a first tapered plate having a first end and a second end. The first plate is tapered such that the first end is thinner than the second end. A second tapered plate has a first end and a second end, the second plate being tapered such that the first end is thinner than the second end. The first and second plate are insertable between a side wall of the base shoe and a glass panel in overlapping relation. Moving the second tapered plate laterally towards the first plate serves to generate a compressive force on the glass panel, and moving the plates laterally apart serves to reduce the compressive force on the panel.
Abstract:
A glass locking system of locking a glass panel within a base shoe having side walls, comprising a first tapered plate having a first end and a second end. The first plate is tapered such that the first end is thinner than the second end. A second tapered plate has a first end and a second end, the second plate being tapered such that the first end is thinner than the second end. The first and second plate are insertable between a side wall of the base shoe and a glass panel in overlapping relation. Moving the second tapered plate laterally towards the first plate serves to generate a compressive force on the glass panel, and moving the plates laterally apart serves to reduce the compressive force on the panel.