Abstract:
Stent delivery system having a contracted delivery configuration and an expanded deployed configuration is provided. The stent delivery system includes a stent having a plurality of expandable elements and a plurality of interstices disposed between adjacent expandable elements, and a delivery catheter having an inflatable balloon including creases extending non-uniformly within the interstices of the stent in the contracted delivery configuration. Each crease defines a maximum radial height within a corresponding interstice, and the maximum radial heights of the creases vary. A method for stenting at a target site within a patient's vessel including providing a stent delivery system is also provided.
Abstract:
A stent-graft including an inner stent having a wall structure including juxtaposed strut-patterns with interconnected struts and connectors connecting the strut-patterns is described. The wall structure of the inner stent has a predetermined length. An outer stent is coaxially arranged around the inner stent and has a wall structure including juxtaposed strut-patterns with interconnected struts and connectors connecting the strut-patterns. The wall structure of the outer stent has a predetermined length and a flexible stretchable material layer arranged between the inner stent and the outer stent. The wall structure of the inner stent has a design differing from the design of the wall structure of the outer stent and the length of the inner stent is equal to the length of the outer stent.
Abstract:
Stent delivery system having a contracted delivery configuration and an expanded deployed configuration is provided. The stent delivery system includes a stent having a plurality of expandable elements and a plurality of interstices disposed between adjacent expandable elements, and a delivery catheter having an inflatable balloon including creases extending non-uniformly within the interstices of the stent in the contracted delivery configuration. Each crease defines a maximum radial height within a corresponding interstice, and the maximum radial heights of the creases vary. A method for stenting at a target site within a patient's vessel including providing a stent delivery system is also provided.
Abstract:
An apparatus, a method, and an electrolytic solution are described for electropolishing metallic stents made, for example, of high-strength medical alloys. The apparatus may include an electropolishing container made from material of low thermal conductivity. The apparatus may include at least one spiral cathode for optimization of solution agitation and/or voltage distribution in the electrolytic solution. Further, an electrolytic solution including at least dimethylsulfate is described. A method for improved electropolishing to consistently produce smooth surfaces is also described.
Abstract:
The invention relates to a catheter for delivery of a self-expanding stent into a body lumen, comprising a shaft having a distal end and a proximal end, the shaft defining a lumen and a stent accommodating portion at its outside for carrying a self-expanding stent, a catheter tip arranged at the distal end of the shaft, a sheath arranged concentrically to the shaft, a pusher coil arranged concentrically in between the shaft and the sheath, and proximal to the stent accommodating portion, wherein the sheath comprises an inside layer, an outside layer, and a wire layer of interwoven wires, the wire layer being arranged in between the inside layer and the outside layer.
Abstract:
Apparatus and methods for stenting are provided comprising a stent attached to a porous biocompatible material that is permeable to endothelial cell ingrowth, but impermeable to release of emboli of predetermined size. Preferred stent designs are provided, as well as preferred manufacturing techniques. Apparatus and methods are also provided for use at a vessel branching. Moreover, embodiments of the present invention may comprise a coating configured for localized delivery of therapeutic agents. Embodiments of the present invention are expected to provide enhanced embolic protection, improved force distribution, and improved recrossability, while reducing a risk of restenosis and thrombus formation.
Abstract:
An apparatus, a method, and an electrolytic solution are described for electropolishing metallic stents made, for example, of high-strength medical alloys. The apparatus may include an electropolishing container made from material of low thermal conductivity. The apparatus may include at least one spiral cathode for optimization of solution agitation and/or voltage distribution in the electrolytic solution. Further, an electrolytic solution including at least dimethylsulfate is described. A method for improved electropolishing to consistently produce smooth surfaces is also described.
Abstract:
Apparatus and methods for stenting are provided comprising a stent attached to a porous biocompatible material that is permeable to endothelial cell ingrowth, but impermeable to release of emboli of predetermined size. Preferred stent designs are provided, as well as preferred manufacturing techniques. Apparatus and methods are also provided for use at a vessel branching. Moreover, embodiments of the present invention may comprise a coating configured for localized delivery of therapeutic agents. Embodiments of the present invention are expected to provide enhanced embolic protection, improved force distribution, and improved recrossability, while reducing a risk of restenosis and thrombus formation.
Abstract:
An implantable lumen filter is described. The filter may include a body formed from an elongate member. The body may include loops encircling an axis extending along the length of the body. The body may be sized to be implanted into a body lumen. The body may be capable of transitioning from a collapsed state to a deployed state. The filter may include a first group of a plurality of members positioned around at least one loop of said body. At least a portion of the plurality of members may be oriented towards the axis. The plurality of members may be arranged to capture and/or lyse particulates of a selected size and/or to inhibit the particulates from passing through the body. Methods to of making, deploying, and retrieving the same are described.
Abstract:
A method of making a stent delivery system is provided in which a delivery catheter has a balloon that extends non-uniformly into interstices of a stent. In accordance with the method a balloon/stent/crimping tube assembly is placed in a crimping tool, the balloon is inflated, and the crimping tool is actuated to compress the stent on the outside of the balloon without application of heat or chemicals, thereby causing creases of the balloon to extend non-uniformly into the interstices of the stent. Optionally, pillows may be formed in the balloon to prevent longitudinal movement of the stent with respect to the balloon during intravascular delivery. One or more secondary crimpings also may be performed to achieve a smoother delivery profile.