Abstract:
An electrochemical cell for wastewater treatment comprises a catalyst coated membrane, an open pore mesh placed on each side of the catalyst coated membrane, and a compression frame placed next to each of the open pore meshes. Each compression frame has compression arms spread within the area delimited by the perimeter of the frame to apply a uniform compression force through fasteners which protrude through the compression arms, the open pore meshes and the catalyst coated membrane. Each open pore mesh comprises a flat surface and an embossed surface. The embossed surface can comprise embossed areas around the holes in the open pore mesh, transverse embossed areas which, in the assembled cell, are placed next to the compression arms of the compression frames and peripheral embossed areas along the perimeter of the open pore meshes. The embossed surface provides an improved protection against electro-circuiting.
Abstract:
An electrochemical wastewater treatment system comprises a reactor tank, an electrochemical reactor and a separation device which filters the effluent stream from the reactor tank and generates a treated wastewater stream and a reject stream which is at least partially fed to the electrochemical reactor or to the reactor tank to thereby increase the concentration of selected soluble and insoluble compounds within the reactor. A portion of the reject stream or a portion of the wastewater in the reactor tank can be discharged as a blowdown stream. Flow control means are provided for adjusting the volume of the reject stream and of the blowdown stream for controlling the compounds concentration. The concentration of soluble and insoluble compounds in the reactor is therefore decoupled from the concentration of the compounds in the reactor effluent stream to achieve an improved reactor performance and a higher quality effluent.
Abstract:
An electrochemical cell for wastewater treatment comprises a catalyst coated membrane, an open pore mesh placed on each side of the catalyst coated membrane, and a compression frame placed next to each of the open pore meshes. Each compression frame has compression arms spread within the area delimited by the perimeter of the frame to apply a uniform compression force through fasteners which protrude through the compression arms, the open pore meshes and the catalyst coated membrane. Each open pore mesh comprises a flat surface and an embossed surface. The embossed surface can comprise embossed areas around the holes in the open pore mesh, transverse embossed areas which, in the assembled cell, are placed next to the compression arms of the compression frames and peripheral embossed areas along the perimeter of the open pore meshes. The embossed surface provides an improved protection against electro-circuiting
Abstract:
A stack of electrochemical cells for wastewater treatment is disclosed comprising at least one electrochemical cell having a solid polymer membrane, an anode catalyst layer and a cathode catalyst layer adjacent to each side of the membrane, an open pore mesh placed next to each of the catalyst layers and a compression frame placed next to each open pore mesh. A cover is placed between the compression frames of two neighbouring electrochemical cells in the stack thereby forming an enclosure which spans the distance between the two neighbouring electrochemical cells thereby isolating the cathode catalyst layer or the anode catalyst layer from the solution in the reactor tank in which the stack is immersed.
Abstract:
An electrolytic cell for treating wastewater comprises an anode assembly, a cathode assembly and at least one bipolar electrode assembly placed between the anode and the cathode assembly such that the anodes of the anode assembly and the cathodes of the cathode assembly are interleaved with the bipolar plates of the bipolar electrode assembly. Each bipolar electrode assembly comprises a series of bipolar electrodes which operate as an anode or as a cathode, stacked in a vertical direction along a threaded bolt made of an electrically conductive material such that the bipolar electrodes operating as anodes are oriented in an opposite direction to the bipolar electrodes operating as cathodes and have their ends overlapping over a predetermined portion and being separated by conductive spacers. In preferred embodiments, only the anodes and the bipolar electrodes operating as anodes are coated with catalyst which saves costs and simplifies the manufacturing process.
Abstract:
A method for operating a wastewater treatment system is disclosed wherein the wastewater treatment system comprises at least one electrochemical cell comprising dimensionally stable electrodes having the same catalyst composition, the electrodes being immersed in wastewater and being connected to a power supply and wherein the voltage at the power supply is monitored and the polarity of the electrochemical cell(s) is reversed when the recorded voltage increases by a predetermined voltage difference. The wastewater treatment system can comprise at least one electrochemical cell which is kept inactive while the active electrochemical cells are operating. The inactive cell(s) can be activated when all the electrodes of the active cells are consumed as indicated by another increase in voltage at the power supply after the polarity of the active cells has been once reversed.
Abstract:
A stack of electrochemical cells for wastewater treatment is disclosed comprising at least one electrochemical cell having a solid polymer membrane, an anode catalyst layer and a cathode catalyst layer adjacent to each side of the membrane, an open pore mesh placed next to each of the catalyst layers and a compression frame placed next to each open pore mesh. A cover is placed between the compression frames of two neighbouring electrochemical cells in the stack thereby forming an enclosure which spans the distance between the two neighbouring electrochemical cells thereby isolating the cathode catalyst layer or the anode catalyst layer from the solution in the reactor tank in which the stack is immersed.
Abstract:
An electrolytic cell, system, and method for the energy efficient electrochemical treatment of wastewater comprising organic and/or inorganic pollutants are disclosed. The system comprises an electrolytic cell comprising a solid polymer, proton exchange membrane electrolyte operating without catholyte or other supporting electrolyte. The electrolytic cell also comprises a filter layer incorporated between the anode fluid delivery layer and the anode flow field plate for removing various contaminants including particulates and/or suspended solids from the wastewater stream. The cell design and operating conditions chosen provide for significantly greater operating efficiency.
Abstract:
An efficient method and system for the electrochemical treatment of waste water comprising organic and/or inorganic pollutants is disclosed. The system comprises at least first and second solid polymer electrolyte electrolytic cell stacks in which each cell comprises a solid polymer, proton exchange membrane electrolyte operating without catholyte or other supporting electrolyte. The first and second stacks differ either in construction or operating condition. The cell stack design and operating conditions chosen provide for significantly greater operating efficiency.
Abstract:
A system for wastewater treatment with in-situ cleaning of electrodes comprises at least one reactor for treating wastewater comprising a chloride salt (sodium, potassium, calcium etc.) with a chloride concentration between 500 mg/L to 5,000 mg/L and a controller for controlling the current supplied to the reactors by controlling the electrode active area and/or the current density such that the total amount of aqueous free chlorine generated during the wastewater treatment requires the addition of an amount of sodium bisulfite determined experimentally to generate a concentration of between 500 mg/L and 5,000 mg/L of hydrochloric acid and a pH of the treated wastewater of less than or equal to 4. The wastewater is recirculated back to the reactors after the addition of sodium bisulfite in the treated wastewater. This secures an in-situ cleaning of the electrodes within the electrochemical reactors, without the need of any additional equipment.