Abstract:
A method for treating highly concentrated resin-desorption liquid generated from wastewater deep purification, including channeling the highly concentrated desorption liquid generated from anion exchange resin treatment through a nanofiltration membrane, the liquid being separated into nanofiltration permeate that can be reused as the desorption agent and highly concentrated nanofiltration retentate; adding a coagulating agent to the highly concentrated nanofiltration retentate to generate coagulation-precipitation; subjecting the supernatant formed after the coagulation-precipitation process to Fenton oxidation or ozone oxidation; after the reaction, adding to the liquid an alkali solution for further coagulation-precipitation; then channeling the liquid so treated back to the biochemical system of biochemical effluent treatment for further biodegradation is provided. The recycled treatment of the highly concentrated desorption liquid consequently reduces the treatment cost and prevents secondary pollution by realizing innocuous treatment and reclamation of resin-desorption liquid as well as reduction of its total volume.
Abstract:
This invention relates to the field of resin, particularly to a magnetic, acrylic strongly basic anion exchange microsphere resin and its manufacturing method. Its basic structure is as follow: wherein its matrix contains magnetic grains and A is a group containing quaternary ammonium salts; the manufacturing method is: taking acrylic compounds as the monomer and mixing it with the crosslinking agent and porogenic agent to form an oil phase; evenly mixing the oil phase with magnetic grains and then conducting suspension polymerization; aminating and alkylating the polymerized magnetic grains so as to form the quaternary ammonium salts, namely the magnetic, acrylic strongly basic anion exchange microsphere resin. The exchange capacity of this resin is higher than that of any magnetic strongly basic anion exchange microsphere resin available either on both Chinese and overseas markets or in literature; it is able to take the place of the traditional strongly basic anion exchange resin in separating and removing soluble organics, particularly precursors of disinfection by-products, and various anions such as nitrates and phosphates.
Abstract:
This invention relates to the field of resin, particularly to a magnetic, acrylic strongly basic anion exchange microsphere resin and its manufacturing method. Its basic structure is as follow: wherein its matrix contains magnetic grains and A is a group containing quaternary ammonium salts; the manufacturing method is: taking acrylic compounds as the monomer and mixing it with the cros slinking agent and porogenic agent to form an oil phase; evenly mixing the oil phase with magnetic grains and then conducting suspension polymerization; aminating and alkylating the polymerized magnetic grains so as to form the quaternary ammonium salts, namely the magnetic, acrylic strongly basic anion exchange microsphere resin. The exchange capacity of this resin is higher than that of any magnetic strongly basic anion exchange microsphere resin available either on both Chinese and overseas markets or in literature; it is able to take the place of the traditional strongly basic anion exchange resin in separating and removing soluble organics, particularly precursors of disinfection by-products, and various anions such as nitrates and phosphates.
Abstract:
The present invention is related to methods in which an electric field pulse is applied to cells and tissue. Several embodiments of the present invention relate to the application of electric field pulses to cells to regulate the physiology and biophysical properties of various cell types, including terminally differentiated and rapidly dividing cells. Methods of regulating transcription of a gene in a cell, marking a cell for diagnostic or therapeutic procedures, determining cellular tolerance to electroperturbation, selectively electroperturbing a population of cells, reducing proliferation of rapidly dividing cells in a patient, and facilitating entry of a diagnostic or therapeutic agent into a cell's intracellular structures are also provided.
Abstract:
Disclosed is an internal circulation resin ion exchange adsorption reactor with a mechanical stirrer. The upper part ⅔˜⅘ of the reactor main body is an open cylinder and the lower part ⅕˜⅓ is a cone-shaped body with a slope of 30°±10°. A bell-jar shaped reaction slot with a turbine water stirrer inside is located in the center of the reactor main body. The reactor main body is equipped with a cylindrical guide plate. A water collection weir, an inclined tube separator and an annular resin collection hopper are located between the shell of the reactor main body and the guide plate. The reactor is equipped with a water inlet pipe and a water outlet pipe. A resin removal pipe is connected with the annular resin collection hopper and a resin desorption slot respectively, and a regenerated resin reflux pipe is connected to the bell-jar shaped reaction slot.
Abstract:
Disclosed is an internal circulation resin ion exchange adsorption reactor with a mechanical stirrer. The upper part ⅔˜⅘ of the reactor main body is an open cylinder and the lower part 1/5˜⅓ is a cone-shaped body with a slope of 30°±10°. A bell-jar shaped reaction slot with a turbine water stirrer inside is located in the center of the reactor main body. The reactor main body is equipped with a cylindrical guide plate. A water collection weir, an inclined tube separator and an annular resin collection hopper are located between the shell of the reactor main body and the guide plate. The reactor is equipped with a water inlet pipe and a water outlet pipe. A resin removal pipe is connected with the annular resin collection hopper and a resin desorption slot respectively, and a regenerated resin reflux pipe is connected to the bell-jar shaped reaction slot.
Abstract:
A continuously flowing, inner circulatory, quasi-fluidized-bed reactor for resin ion exchange and adsorption. The reactor comprises a main body casing, an inclined pipe separator, an outlet weir, an inlet pipe, an outlet pipe, a reducing fluidization tank, a guide plate, a resin regeneration tank, a resin discharge pipe, and a return pipe for regenerated resin and a distributing ejector. The reactor is particularly suitable for advanced treatment of supply water, wastewater, biochemical effluent and reclaimed water by using (magnetic) powder resin.
Abstract:
A method of production of active carbon by pyrolysis of organic materials, includes pyrolysis unit, reforming unit, drying unit, purification unit, gas storage unit and high temperature regenerative combustion unit. Organic materials are subjected to pyrolysis reaction in pyrolysis unit to produce combustible gas, tar and char. Combustible gas is reformed through reforming unit then enters into the drying unit for drying organic materials. One part of the purified combustible gas is combusted in the direction of combustion channel in the high temperature regenerative combustion unit, and the combustion heat is produced. At the same time, another part of combustible gas exchanges heat in the direction of heat exchanger channel in the regenerative combustion unit. Then it is used as pyrolysis activation medium entering into the pyrolysis unit in process of pyrolysis and activation reaction. The char is activated by the combustible gas in the pyrolysis unit then forms activated carbon. The sensible heat of the combustible pyrolysis gas is fully released through drying unit. A part of the combustible gas is combusted to produce heat as the required energy source of pyrolysis process. The combustible gas is used as pyrolysis medium and activator in the generation process of active carbon.
Abstract:
A continuously flowing, inner circulatory, quasi-fluidized-bed reactor for resin ion exchange and adsorption. The reactor comprises a main body casing, an inclined pipe separator, an outlet weir, an inlet pipe, an outlet pipe, a reducing fluidization tank, a guide plate, a resin regeneration tank, a resin discharge pipe, and a return pipe for regenerated resin and a distributing ejector. The reactor is particularly suitable for advanced treatment of supply water, wastewater, biochemical effluent and reclaimed water by using (magnetic) powder resin.
Abstract:
A method for treating highly concentrated resin-desorption liquid generated from wastewater deep purification, including channeling the highly concentrated desorption liquid generated from anion exchange resin treatment through a nanofiltration membrane, the liquid being separated into nanofiltration permeate that can be reused as the desorption agent and highly concentrated nanofiltration retentate; adding a coagulating agent to the highly concentrated nanofiltration retentate to generate coagulation-precipitation; subjecting the supernatant formed after the coagulation-precipitation process to Fenton oxidation or ozone oxidation; after the reaction, adding to the liquid an alkali solution for further coagulation-precipitation; then channeling the liquid so treated back to the biochemical system of biochemical effluent treatment for further biodegradation is provided. The recycled treatment of the highly concentrated desorption liquid consequently reduces the treatment cost and prevents secondary pollution by realizing innocuous treatment and reclamation of resin-desorption liquid as well as reduction of its total volume.