Abstract:
A method and apparatus for forecasting the likely occurrence of convective weather events, such as thunderstorms. An image filter is used to identify areas of interest within a meteorological image that are likely to contain convective weather. The image filter and an image difference processor identify areas within the meteorological image that are likely to experience a growth and/or decay of weather events. The meteorological image, interest image and growth/decay image are processed to produce the short-term forecast.
Abstract:
A method and apparatus for determining the predictability of an element in a weather radar image. An image filter approximating the envelope of the organized storm radar image is applied to a pixel in a received weather radar image to generate a processed pixel value. A variability value is determined from the variation in the pixel values of the neighboring pixels which lie within the image filter. The predictability is generated from the processed pixel value and the variability. Pixels having high processed pixel values and low variabilities typically correspond to pixels within a strong organized storm and, therefore, are more predictable. Pixels having low processed pixel values and high variabilities, such as pixels representative of airmass storms, generally have lower predictabilities.
Abstract:
A method and apparatus for tracking of organized storms using weather radar images. An image filter approximating the envelope of the organized storm radar image is used to improve tracking of the large scale storm features. The image filter is repeatedly rotated to different orientations at each point in the weather radar images to produce filtered images. The filtered images are provided to an image tracker to generate an array of track vectors. Application of the array of track vectors to the unfiltered image generates a predicted weather radar image.
Abstract:
A method and apparatus for forecasting the likely occurrence of convective weather events, such as thunderstorms. An image filter is used to identify areas of interest within a meteorological image that are likely to contain convective weather. The image filter and an image difference processor identify sub-image regions within the meteorological image that are likely to experience a growth and/or decay of weather events. The classification filter classifies sub-image regions within the meteorological image into a number of predetermined storm categories. The meteorological images are filtered using matched filters, features within the filtered images are tracked, and the resulting track vectors are combined according to the storm classification. The meteorological image, interest image, growth/decay image, classification image, and combined vectors are processed to produce the short-term forecast.