Abstract:
Diffractive optical structures, lenses, waveplates, devices, systems and methods, which have the same effect on light regardless of temperature within an operating temperature range. Temperature-compensated switchable diffractive waveplate systems, in which the diffraction efficiency can be maximized for the operating wavelength and temperature by means of adjustment of the electric potential across the liquid crystal or other anisotropic material in the diffracting state of the diffractive state, based on prior measurements of diffraction efficiency as a function of wavelength and temperature. The switchable diffractive waveplates can be a switchable diffractive waveplate diffuser, a switchable cycloidal diffractive waveplate, and a switchable diffractive waveplate lens. An electronic controller can apply an electric potential to the switchable diffractive waveplate. Amplitudes of the electric potential can be determined from lookup tables such that diffraction efficiency at an operating wavelength and measured temperature is maximized. A communications channel can transfer the measured temperature from temperature measurement means to the electronic controller.
Abstract:
Modulated circular polarization viewing systems and methods that cause temporal modulation of color, brightness, or both, of objects treated with materials having differential polarization reflectance.
Abstract:
Optical beam shaping systems and methods can include an illumination source and a diffractive waveplate diffuser. The diffractive waveplate diffuser includes a layer of patterned optically anisotropic material. In one embodiment, the layer of patterned optically anisotropic material is fabricated in the form of patterned, optically anisotropic liquid crystal polymer. In another embodiment, the layer of patterned optically anisotropic material is a layer of liquid crystal, the diffractive waveplate diffuser also includes two alignment layers and two transparent conductive coatings, and the properties of the liquid crystal layer are controlled by the application of an electric potential between the two transparent conductive coatings. A method is provided for designing the alignment pattern of the layer of optically anisotropic material.
Abstract:
Methods of fabricating optical lenses and mirrors, systems and composite structures based on diffractive waveplates, and fields of application of said lenses and mirrors that include imaging systems, astronomy, displays, polarizers, optical communication and other areas of laser and photonics technology. Diffractive lenses and mirrors of shorter focal length and larger size, with more closely spaced grating lines, and with more exacting tolerances on the optical characteristics, can be fabricated than could be fabricated by previous methods.
Abstract:
Method for jamming or affecting the quality of photo and video recording, the method comprising illuminating the area, collecting light reflected or scattered from optical components such as camera lenses, amplifying them, and reversing the amplified beams back to the camera with phase conjugating mirror. The method may further comprise image acquisition and processing for identifying unwanted optical components and sensors, and electronically pointing and focusing a laser beam on said components and sensors.
Abstract:
Lenses, devices, apparatus, systems, methods of manufacturing and fabricating an ophthalmic lens device for correction of human vision. The ophthalmic lens device includes at least one diffractive waveplate coating with an optical axis orientation pattern designed to correct the vision of individual patients. The ophthalmic lens device including diffractive waveplate coating may also provide a portion of the required vision correction by means of refraction of light by curved surfaces of a dielectric material.
Abstract:
Pointing and positioning system of light beams and images including a plurality of cycloidal diffractive waveplates, each waveplate capable of deviating a generally broadband light beam over a predetermined angle. The lateral translation and deviation angles of the light beams are controlled by controlling the relative distance, rotational position, and the diffraction efficiency of at least one in the plurality of waveplates.
Abstract:
Cycloidal boundary conditions for aligning liquid crystalline materials are obtained by mechanical rubbing of a polymer coating. The rubbing is performed by a rubbing head rotating around an axis perpendicular to the rubbing plane while the alignment polymer film is being translated across the rubbing film such as only a linear portion of the alignment film touches the rubbing film at any given time.
Abstract:
Diffractive optical structures, lenses, waveplates, devices, systems, and methods, which have the same effect on light regardless of the polarization state of the light, utilizing systems of polarization discriminator diffractive waveplate optics and differential polarization converters with special arrangements that do not require introducing spatial separation between the layers.
Abstract:
Diffractive optical structures, lenses, waveplates, devices, systems, and methods, which have the same effect on light regardless of the polarization state of the light, utilizing systems of polarization discriminator diffractive waveplate optics and differential polarization converters with special arrangements that do not require introducing spatial separation between the layers.