Abstract:
A high-power optical fiber laser includes: an oscillator (1); a pumping laser (5) able to emit a high-power pumping optical radiation beam; and a signal-amplifying optical fiber (3) able to receive the optical source signal and the high-power pumping optical radiation beam so as to generate a high-power laser beam. The pumping laser includes a plurality of pumping multimode laser diodes (7a-7f) and a laser cavity, the laser cavity including a double-clad fiber (4) including: a neodymium-doped monomode waveguide; a fiber Bragg grating (9) forming one end of the laser cavity; and a fiber reflector (11) forming the other end of the laser cavity, the monomodefiber laser being able to generate a laser radiation beam when it is optically pumped by a pumping radiation beam originating from the plurality of pumping laser diodes in order for the laser cavity to emit a high-power pumping laser radiation beam.
Abstract:
A radiation-resistant optical fiber includes at least one core and at least one first cladding surrounding the core. The core includes a phosphosilicate matrix, the core being rare-earth doped, the rare earth being chosen from erbium, ytterbium, neodymium, thulium or erbium-ytterbium of thulium-holmium codoped and the core is cerium codoped. Also described is a method for radiation-hardening an optical fiber including the core having a phosphosilicate matrix, the core being rare-earth doped, the rare earth being chosen from erbium, ytterbium, neodymium and thulium, or erbium-ytterbium or thulium-holmium codoped, and including a step of cerium codoping the core of the fiber.
Abstract:
A high-power optical fibre laser includes: an oscillator (1); a pumping laser (5) able to emit a high-power pumping optical radiation beam; and a signal-amplifying optical fibre (3) able to receive the optical source signal and the high-power pumping optical radiation beam so as to generate a high-power laser beam. The pumping laser includes a plurality of pumping multimode laser diodes (7a-7f) and a laser cavity, the laser cavity including a double-clad fibre (4) including: a neodymium-doped monomode waveguide; a fibre Bragg grating (9) forming one end of the laser cavity; and a fibre reflector (11) forming the other end of the laser cavity, the monomodefibre laser being able to generate a laser radiation beam when it is optically pumped by a pumping radiation beam originating from the plurality of pumping laser diodes in order for the laser cavity to emit a high-power pumping laser radiation beam.
Abstract:
A method for the deposition of a coating layer on an optical fiber while it is being drawn. The coating layer is designed to reduce the permeability of the optical fiber to water vapor and therefore to increase its lifetime. The method is characterized in that it consists in carrying out a decomposition of a gas mixture of boron halogenide and hydrogen and/or boron halogenide and ammonia gas by a microwave plasma-assisted addition of energy and in that the operation is conducted in the presence of a carrier gas in order firstly to carry the gas mixture to a reaction medium and secondly to activate the plasma.