Abstract:
A method for determining a location of an uncharged region on a photoconductive drum in an electrophotographic device, comprising rotating the photoconductive drum, and charging a surface of the drum via a charge roller by application of a voltage to the charge roller. An electrical characteristic of one of the charge roller or photoconductive drum is measured, and an alteration in the electrical characteristic is used to determine a location of the uncharged region.
Abstract:
A method is presented for automatically controlling the spacing between printer drums. The printer includes at least two print drums (920.1, 920.2) whose parallel rotation leads to image transfer, either between the drums or onto a printed surface. First the pressure a signal indicative of the pressure between the two print drums is obtained by a measurement unit (930), and then the gap between the drums is automatically adjusted in accordance with the indicator signal by a gap adjuster (940).
Abstract:
Electrophotographic print system, comprising a photosensitive medium, and a laser array being provided with a plurality of laser diodes arranged to emit light onto the photosensitive medium for varying an electrical potential on a surface of the photosensitive medium, and a plurality of heat dissipation diodes, each heat dissipation diode being arranged in proximity to a corresponding laser diode, wherein each laser diode and the corresponding heat dissipation diode are coupled to a common drive circuit and are arranged in opposite current flow directions with respect to each other, so that in use the current flows either through the laser diode or through the heat dissipation diode depending on the current flow direction in the drive circuit.
Abstract:
A coating system comprising: a rotating roller; an electrode having a surface located adjacent the roller that defines a space between the surface of the roller and the electrode surface, which space has first and second apertures located at different angular positions about the axis of the roller, wherein the electrode surface is formed with at least one drain aperture located between the first and second apertures; a voltage source that applies a voltage difference between the electrode and the roller; and a source of liquid toner comprising charged toner particles dispersed in a carrier liquid that discharges the liquid toner into the space through the first aperture, wherein a portion of the liquid toner discharged into the space coats a region of the surface of the roller that passes by the electrode, a portion exits the space through the second aperture and a portion exits through the at least one drain aperture.
Abstract:
Imaging methods, image engines, and photoconductor charging systems are described. According to one embodiment, an imaging method includes providing a charge device configured to provide an electrical charge to a surface of an imaging member which is usable for imaging, moving a surface of the charge device adjacent to the imaging member and a bias member, during the moving, first charging a discharged portion of the surface of the charge device using the bias member providing a charged portion of the surface of the charge device, during the moving, second charging a portion of the surface of the imaging member using the charged portion of the charge device, the second charging providing the discharged portion of the surface of the charge device, and repeating the first charging and the second charging during the moving.
Abstract:
Imaging methods, image engines, and photoconductor charging systems are described. According to one embodiment, an imaging method includes providing a charge device configured to provide an electrical charge to a surface of an imaging member which is usable for imaging, moving a surface of the charge device adjacent to the imaging member and a bias member, during the moving, first charging a discharged portion of the surface of the charge device using the bias member providing a charged portion of the surface of the charge device, during the moving, second charging a portion of the surface of the imaging member using the charged portion of the charge device, the second charging providing the discharged portion of the surface of the charge device, and repeating the first charging and the second charging during the moving.
Abstract:
Imaging apparatus including squeegee apparatus for squeegeeing excess material from a surface, from which surface at least a portion of the material remaining after squeegeeing is to be transferred to another surface, comprising: a first surface, having a central portion and two end portions having recessed surfaces and having a liquid material thereon at least in said central portion, said surface moving in a given direction at a squeegee region; and a second, squeegee, surface, urged against at least the central portion of the first surface at the squeegee region and formed with contiguous end portions which mate with the recessed end surfaces of the first surface.
Abstract:
Electrophotographic print system, comprising a photosensitive medium, and a laser array being provided with a plurality of laser diodes arranged to emit light onto the photosensitive medium for varying an electrical potential on a surface of the photosensitive medium, and a plurality of heat dissipation diodes, each heat dissipation diode being arranged in proximity to a corresponding laser diode, wherein each laser diode and the corresponding heat dissipation diode are coupled to a common drive circuit and are arranged in opposite current flow directions with respect to each other, so that in use the current flows either through the laser diode or through the heat dissipation diode depending on the current flow direction in the drive circuit.
Abstract:
A method is presented for automatically controlling the spacing between printer drums. The printer includes at least two print drums (920.1, 920.2) whose parallel rotation leads to image transfer, either between the drums or onto a printed surface. First the pressure a signal indicative of the pressure between the two print drums is obtained by a measurement unit (930), and then the gap between the drums is automatically adjusted in accordance with the indicator signal by a gap adjuster (940).
Abstract:
A method of charging an imaging member having an outer surface with an imaging region and a seam region. A charge device is provided adjacent the imaging member. An electrical charge is provided to the imaging region of the imaging member using a voltage on the charge device. An other electrical charge is provided to the seam region of the imaging member using an other voltage on the charge device.