Abstract:
An excitation system includes a pair of piezoelectric elements configured to apply respective excitation forces to a test structure, a clamp including an adjustable arm, the adjustable arm being configured to capture the test structure between the pair of piezoelectric elements, a controller coupled to the pair of piezoelectric elements and configured to generate a respective excitation control signal for each piezoelectric element, each excitation control signal being configured such that the respective excitation forces are matched to one another, and a pair of sensor film structures to generate respective output signals indicative of the excitation forces applied to the test structure, each sensor film structure being disposed between a respective one of the pair of piezoelectric elements and the test structure.
Abstract:
A method includes disposing a plurality of actuators about a subject, each actuator being configured to generate a respective vibration signal, each vibration signal applying a normal force to the subject, and controlling the plurality of actuators such that the respective vibration signal of each actuator of the plurality has a respective vibration characteristic. Each actuator is oriented such that the respective vibration signal propagates along a longitudinal axis of the subject for stimulation of the subject remote from the plurality of actuators.
Abstract:
A vehicular system includes a crankshaft, a drive shaft, a plurality of electromagnetic machines mechanically coupling the crankshaft to the drive shaft, a power controller electrically coupled to the plurality of electromagnetic machines and configured to control current and/or voltage provided to, or received from, each electromagnetic machine of the plurality of electromagnetic machines, a supervisory controller communicatively coupled with the power controller and configured to establish an operational mode for the power controller, and a storage device electrically coupled to the power controller to store energy captured by the power controller.
Abstract:
A method includes disposing a plurality of actuators about a subject, each actuator being configured to generate a respective vibration signal, each vibration signal applying a normal force to the subject, and controlling the plurality of actuators such that the respective vibration signal of each actuator of the plurality has a respective vibration characteristic. Each actuator is oriented such that the respective vibration signal propagates along a longitudinal axis of the subject for stimulation of the subject remote from the plurality of actuators.
Abstract:
An excitation system includes a pair of piezoelectric elements configured to apply respective excitation forces to a test structure, a clamp including an adjustable arm, the adjustable arm being configured to capture the test structure between the pair of piezoelectric elements, a controller coupled to the pair of piezoelectric elements and configured to generate a respective excitation control signal for each piezoelectric element, each excitation control signal being configured such that the respective excitation forces are matched to one another, and a pair of sensor film structures to generate respective output signals indicative of the excitation forces applied to the test structure, each sensor film structure being disposed between a respective one of the pair of piezoelectric elements and the test structure.
Abstract:
A vehicular system includes a crankshaft, a drive shaft, a plurality of electromagnetic machines mechanically coupling the crankshaft to the drive shaft, a power controller electrically coupled to the plurality of electromagnetic machines and configured to control current and/or voltage provided to, or received from, each electromagnetic machine of the plurality of electromagnetic machines, a supervisory controller communicatively coupled with the power controller and configured to establish an operational mode for the power controller, and a storage device electrically coupled to the power controller to store energy captured by the power controller.
Abstract:
A system to detect an edge of an object includes an optical instrument configured to direct a laser beam toward the object, configured to receive a reflection of the laser beam based on whether the laser beam impacts the object, and configured to generate an intensity output indicative of an intensity of the reflection, a positioning system configured to position the object in a location relative to the optical instrument, the positioning system including a position sensor to provide a position output indicative of the location, and a processor configured to determine a position of the edge of the object based on the intensity output and the position output.