Abstract:
An optical fiber assembly is provided including an optical fiber and a beam shaping component affixed to an extremity of the optical fiber. The optical fiber supports a guided mode having a spatial profile defining a first shape. The beam shaping component defines a light path and has a transversal refractive index profile including an outer refractive index value greater than an inner refractive index value. The beam shaping component transforms the spatial profile of a light beam propagating along the light path between the first shape and a second shape different from the first shape. The optical assembly may for example transform a Gaussian light beam into a flat-top or donut shape.
Abstract:
A method of manufacturing an optical fiber is provided. The method involves providing a fiber preform with an active core and a pump-guiding cladding, and assembling one or more side rods to the fiber preform. The side rods extend longitudinally along an outer surface of the pump-guiding cladding. The resulting fiber preform assembly is drawn into the optical fiber. Each side rod defines a longitudinal protrusion extending along the optical fiber. Each longitudinal protrusion may have a cross-section forming a middle bump projecting radially away from the outer surface of the pump-guiding cladding and smooth transition regions with this outer surface of the pump-guiding cladding on opposite sides of the middle bump.
Abstract:
The present relates to a spatially modulated cladding mode stripper and to an optical fiber comprising a spatially modulated cladding mode stripper. The spatially modulated cladding mode stripper comprises a series of alternating high cladding light extracting regions and low cladding light extracting regions located along a portion of a cladding to modulate extracting of cladding light therefrom.
Abstract:
There is provided a method for making an optical element having a textured surface. The method comprises the steps of: a) providing a plurality of primary optical fiber segments, each primary fiber segment comprising one or more cores; b) bundling the primary fiber segments into an assembly with the cores of said primary fiber segments extending parallely; c) transforming the assembly into a secondary structure comprising the parallely extending cores; and d) etching a surface of the secondary structure according to an etch profile of said secondary structure, the etch profile being defined by the parallely extending cores, thereby forming the textured surface of the optical element. An optical element having a textured surface is also provided.
Abstract:
The present relates to a spatially modulated cladding mode stripper and to an optical fiber comprising a spatially modulated cladding mode stripper. The spatially modulated cladding mode stripper comprises a series of alternating high cladding light extracting regions and low cladding light extracting regions located along a portion of a cladding to modulate extracting of cladding light therefrom.
Abstract:
There is provided a method for making an optical element having a textured surface. The method comprises the steps of: a) providing a plurality of primary optical fiber segments, each primary fiber segment comprising one or more cores; b) bundling the primary fiber segments into an assembly with the cores of said primary fiber segments extending parallely; c) transforming the assembly into a secondary structure comprising the parallely extending cores; and d) etching a surface of the secondary structure according to an etch profile of said secondary structure, the etch profile being defined by the parallely extending cores, thereby forming the textured surface of the optical element. An optical element having a textured surface is also provided.