Abstract:
An improved metal mask-making process is disclosed which involves starting with a metal mask having etched apertures using existing processes and coating it conformably with a substantially thick layer, so as to reduce the minimum aperture size while increasing the metal mask thickness. The conformal layer is chosen for minimum stress, good adhesion and thermal compatibility to the original metal mask material. Additional thin conformal coatings can be provided for imparting mechanical and chemical resistance to the metal mask.
Abstract:
A method is provided for the removal of the surface layer of the residual photoresist mask pattern used for metal subtractive etching which uses the same reactor equipment but employs reactive fluorine-containing gases to form volatile compounds with the surface layer, so that subsequently a conventional oxygen plasma stripping process can be used for complete resist residue removal without requiring excessive temperature exposure of the integrated circuit devices.
Abstract:
A CHF.sub.3 -based RIE etching process is disclosed using a nitrogen additive to provide high selectivity of SiO.sub.2 or PSG to Al.sub.2 O.sub.3, low chamfering of a photoresist mask, and low RIE lag. The process uses a pressure in the range of about 200-1,000 mTorr, and an appropriate RF bias power, selected based on the size of the substrate being etched. The substrate mounting pedestal is preferably maintained at a temperature of about 0.degree. C. Nitrogen can be provided from a nitrogen-containing molecule, or as N.sub.2. He gas can be added to the gas mixture to enhance the RIE lag-reducing effect of the nitrogen.