Abstract:
An thin film alloy based on chemical elements with high glass forming ability is disclosed. The alloy is deposited as a thin film from a source of substantially the same chemical composition. Within the deposited thin film, amorphization is induced extensively up to decades of micrometers in size during controlled annealing. Such controllable extensive amorphization throughout the thin film is useful to regulate the proportion of amorphous phase to crystalline phase, establish the structure/property relationships and thus tailor specific properties.
Abstract:
A heat pipe (10) includes a pipe body (20) having an inner wall (22) and a screen mesh (30) disposed on the inner wall of the pipe body. The screen mesh is in the form of a multi-layer structure with at least one layer thereof having an average pore size different from that of the other layers. The layer with large-sized pores is capable of reducing the flow resistance to the condensed fluid to flow back, whereas the layer with small-size pores is capable of providing a relatively large capillary pressure for drawing the condensed fluid from the condensing section to the evaporating section.
Abstract:
A heat pipe (10) includes a pipe body (30) filled with working fluid, a screen mesh (50) located in the pipe body, a porous support member (70) supporting the screen mesh to contact with an inner wall (32) of the pipe body.
Abstract:
A heat pipe (10) includes a casing (12) and a sintered powder wick (14) arranged at an inner surface of the casing. The sintered powder wick is in the form of a multi-layer structure in a radial direction of the casing and at least one layer is divided into multiple sections in a longitudinal direction of the casing, and the multiple sections have powder sizes different from each other. The sections with large-sized powders are capable of reducing the flow resistance to the condensed liquid to flow back while the sections with small-sized powders are capable of providing a satisfactory capillary force for moving the condensed liquid.
Abstract:
A method (50) for making a heat pipe (10) includes the following steps: a) providing a screen mesh (30) in the form of a multi-portion structure with at least one portion having an average pore size different from that of the other portions; b) rolling the screen mesh into a hollow column form; c) inserting the screen mesh into a hollow pipe body (22) of the heat pipe; d) sintering the screen mesh received therein at a predetermined temperature; and e) filling a working fluid into the pipe body and sealing the pipe body. The portion with large-sized pores is capable of reducing the flow resistance to a condensed fluid to flow back, whereas the portion with small-size pores is capable of providing a relatively large capillary pressure for drawing the condensed fluid from the condensing section to the evaporating section of the heat pipe.
Abstract:
A mesh-type heat pipe (10) includes a casing (12), a tube (14) located inside the casing and a screen mesh wick (16) located between the casing and the tube. The tube defines therein a plurality of through holes (142) and at least one cutout (144). The wick is held against the casing by the tube. Under the support of the tube, the wick as a whole engages closely an inner surface of the casing, thereby establishing an effective heat transfer path between the casing and a working fluid that is saturated in the wick. Meanwhile, with the cutout in the tube presented, the heat pipe incorporating such tube is easily to be bent or flattened so as to enable the heat pipe to be applicable in electronic devices with a limited mounting space for a cooling device, such as notebook computers.
Abstract:
An thin film alloy based on chemical elements with high glass forming ability is disclosed. The alloy is deposited as a thin film from a source of substantially the same chemical composition. Within the deposited thin film, amorphization is induced extensively up to decades of micrometers in size during controlled annealing. Such controllable extensive amorphization throughout the thin film is useful to regulate the proportion of amorphous phase to crystalline phase, establish the structure/property relationships and thus tailor specific properties.
Abstract:
A heat pipe includes a hollow tube, a working medium filled in the tube, and a wick structure disposed in and contacting with the tube. The wick structure is formed by weaving first wires and second wires together. The second wires each have two opposite major surfaces. A portion of one of the two major surfaces contacts with an interior wall of the tube.
Abstract:
A method is disclosed to produce a wick structure for a heat pipe. The wick structure is a sintered powder wick and is produced by sintering process. A group of powders is firstly provided. The group of powders is then classified into many sub-groups in terms of powder size. At least one sub-group of the powders is selected to form the wick structure via the sintering process. Thus, the powders used to construct the wick structure are confined to powders having a relatively narrower range of powder size in relative to the group of powders as originally provided. This has greatly reduced the complexity involved in the sintering process, and as a result, the required sintering temperature and the required time for the sintering process are easier to be determined.
Abstract:
A method is disclosed to produce a heat pipe with a sintered powder wick formed inside the heat pipe. The method employs tape-casting technology to firstly produce thin sheets of powder and then these sheets are sintered to form the wick. In the tape casting procedure, a slurry of the powders necessary to construct said wick is cast onto a moving surface to form a slurry layer and then the slurry layer is dried to form a green tape. The green tape is rolled onto a mandrel and then is inserted into a hollow casing and sintered to cause the powders in the green tape to diffusion-bond together. Thus, the sintered powder wick is constructed.