Abstract:
A sensor structure of a touch panel and a method of determining a touch signal generated by the same are disclosed. The sensor structure includes a plurality of sensor lines disposed on a surface of a substrate, and a control circuit electrically connected to the sensor lines. Each of the sensor lines has a plurality of conductive pads and a conductive line electrically connected the conductive pads. The control circuit receives a touch signal from one of the sensor lines. The touch signal is resulting from a touch capacitance generated between a touch and one of the conductive pads of the sensor line. The control circuit calculates the position of the touch based on the touch capacitance. In addition, the touch capacitance generated by a conductive pad close to the control circuit is larger than the touch capacitance generated by another conductive pad further away from the control circuit.
Abstract:
A semiconductor device having a capacitor is provided. The semiconductor device includes a substrate, a capacitor and a metal-oxide-semiconductor (MOS) transistor. The MOS transistor is located in a MOS transistor region of the substrate, and the MOS transistor region has a first bottom diffusion region. The capacitor is located in a capacitor region of the substrate and consisted of a second bottom diffusion region located in the substrate, a first dielectric layer located over the second bottom diffusion region, a bottom conductive layer located over the first dielectric layer, a second dielectric layer located over the bottom conductive layer, and a top conductive layer located over the second dielectric layer. The first bottom diffusion region and the second bottom diffusion region are different conductive type.
Abstract:
A method for fabricating metal-oxide-semiconductor devices is provided. The method includes forming a gate dielectric layer on a substrate; depositing a polysilicon layer on the gate dielectric layer; forming a resist mask on the polysilicon layer; etching the polysilicon layer not masked by the resist mask, thereby forming a gate electrode; etching a thickness of the gate dielectric layer not covered by the gate electrode; stripping the resist mask; forming a salicide block resist mask covering the gate electrode and a portions of the remaining gate dielectric layer; etching away the remaining gate dielectric layer not covered by the salicide block resist mask, thereby exposing the substrate and forming a salicide block lug portions on two opposite sides of the gate electrode; and making a metal layer react with the substrate, thereby forming a salicide layer that is kept a distance “d” away from the gate electrode.
Abstract:
A method for fabricating metal-oxide-semiconductor devices is provided. The method includes forming a gate dielectric layer on a substrate; depositing a polysilicon layer on the gate dielectric layer; forming a resist mask on the polysilicon layer; etching the polysilicon layer not masked by the resist mask, thereby forming a gate electrode; etching a thickness of the gate dielectric layer not covered by the gate electrode; stripping the resist mask; forming a salicide block resist mask covering the gate electrode and a portions of the remaining gate dielectric layer; etching away the remaining gate dielectric layer not covered by the salicide block resist mask, thereby exposing the substrate and forming a salicide block lug portions on two opposite sides of the gate electrode; and making a metal layer react with the substrate, thereby forming a salicide layer that is kept a distance “d” away from the gate electrode.
Abstract:
A touch input device includes a substrate, plural sensible conductive layers and plural first switch units. The substrate is provided with an upper surface, the sensible conductive layers are all configured on the upper surface and are arranged in columns and rows. The first switch units are configured on the substrate and are electrically connected with the sensible conductive layers. By the first switch units, same columns of the sensible conductive layers can conduct electrically with one another and same rows of the sensible conductive layers can conduct electrically with one another.
Abstract:
A multi-dimensional touch display device includes a multi-dimensional display device and a touch sensing device. The multi-dimensional display device is used to provide stereoscopic images with different depths. The touch sensing device connected to the multi-dimensional display device has a plurality of sensing surfaces for determining a planar coordinate and a depth of a touch input point.
Abstract:
A sensor structure of a touch panel and a method of determining a touch signal generated by the same are disclosed. The sensor structure includes a plurality of sensor lines disposed on a surface of a substrate, and a control circuit electrically connected to the sensor lines. Each of the sensor lines has a plurality of conductive pads and a conductive line electrically connected the conductive pads. The control circuit receives a touch signal from one of the sensor lines. The touch signal is resulting from a touch capacitance generated between a touch and one of the conductive pads of the sensor line. The control circuit calculates the position of the touch based on the touch capacitance. In addition, the touch capacitance generated by a conductive pad close to the control circuit is larger than the touch capacitance generated by another conductive pad further away from the control circuit.
Abstract:
A driving method for a photosensor array panel including a plurality of photosensor strips, a plurality of scan lines, at least a dummy photosensor strip, and at least a dummy scan line is provided. The photosensor strips are arranged side by side and located beside the dummy photosensor strip. The scan lines are electrically connected to the photosensor strips, and the dummy scan line is electrically connected to the dummy photosensor strip. The driving method includes the following steps. First, the photosensor strips are turned on in sequence through the scan lines. When none of the photosensor strips is turned on, the dummy photosensor strip will be turned on through the dummy scan line.
Abstract:
A surface antenna formation method to form an antenna on the surface of an antenna carrier economically by means of spraying a conducting paint into a patterned opening of a shield being covered on the antenna carrier and then employing a laser etching technique to remove burrs from the border of the antenna thus formed on the surface of the antenna carrier after removal of the shield.
Abstract:
A sensor structure of a touch panel and a method of determining a touch signal generated by the same are disclosed. The sensor structure includes a plurality of sensor lines disposed on a surface of a substrate, and a control circuit electrically connected to the sensor lines. Each of the sensor lines has a plurality of conductive pads and a conductive line electrically connected the conductive pads. The control circuit receives a touch signal from one of the sensor lines. The touch signal is resulting from a touch capacitance generated between a touch and one of the conductive pads of the sensor line. The control circuit calculates the position of the touch based on the touch capacitance. In addition, the touch capacitance generated by a conductive pad close to the control circuit is larger than the touch capacitance generated by another conductive pad further away from the control circuit.