Abstract:
A particle filled resin system is produced by cavitation. A method of producing a filled resin system comprises providing a resin and a filler, and subjecting the resin and filler to cavitation. A method of changing the rheology of a filled resin system comprises subjecting the filled resin system to cavitation.
Abstract:
The present invention concerns adhesive compositions that provide corrosion-preventative properties and improved adhesive bonding on corrodible surfaces, such as may be found in electronic components. These compositions provide the substrates with greatly increased resistance to corrosion, especially during long term exposure to high temperatures and/or high humidity. When used on conductive substrates, the compositions also maintain good initial and ongoing electrical conductivity.
Abstract:
A composition that comprises a) an admixing of at least one epoxy resin and aliphatic amine wherein the ratio of epoxy function group/amine is greater than 1; b) a conductive filler; c) one or more corrosion inhibitors, oxygen scavengers or both; d) imidazole as a curing agent/catalyst; and e) optionally other additives such as organic solvents, flow additives, adhesion promoters and rheology modifiers. The reaction of epoxy and aliphatic amine with excess epoxy functionality results in a flexible resin with remaining active epoxy groups. The compositions exhibit improved electrical stability and impact resistance over other conductive adhesive compositions that do not comprise the admixture.
Abstract:
A composition for use as a thermal interface material in a heat-generating electronic device is provided. The composition comprises a blend of fluoroelastomer components that are copolymers of hexafluoropropylene and vinylidene and consists of greater than 40% fluorine along the backbone, and conductive filler particles. The blend contains at least one component with a Mooney viscosity of 50 poise or less and at least one component with a Mooney viscosity of greater than 50 poise.
Abstract:
A radio frequency identification (“RFID”) system antenna having adhesive pre-applied to one or more of its contact pads to allow for high speed attachment of the antenna to the RFID die or die strap. Also disclosed is a method for attaching an RFID antenna having pre-applied adhesive to a die or die strap.
Abstract:
A composition for use as a thermal interface material in a heat-generating electronic device is provided. The composition comprises a blend of nitrile rubber and carboxyl-terminated butadiene, carboxyl-terminated butadiene nitrile or a mixture thereof, and conductive filler particles.
Abstract:
A thermal interface member in a heat generating, electronic device is provided. The thermal interface member comprises either a single fluoroelastomer or a blend of fluoroelastomer components that are copolymers of hexafluoropropylene and vinylidene and consists of greater than 40% fluorine along the backbone, and one or more conductive fillers. The fluoroelastomer blend contains at least one component with a Mooney viscosity of 50 poise or less and at least one component with a Mooney viscosity of greater than 50 poise, while the single fluoroelastomer component may have a Mooney viscosity of either less than or greater than 50.
Abstract:
An anisotropic conductive adhesive that provides strong adhesion to metals and organic substrates to generate stable and reliable electric interconnects. The adhesive provides the benefits of short thermocompression bond time at low temperatures. The adhesive contains cationic curable resin, latent cationic catalyst that thermally cures the resin at high speeds and low temperatures, conductive filler, optionally a film forming thermoplastic solid resin and optionally nano size filler. The optional nano filler provides the benefit of reducing the coefficient of thermal energy mismatch, improving the adhesion strength and reducing the total heat of reaction for the system.
Abstract:
A radio frequency identification (“RFID”) system antenna having adhesive pre-applied to one or more of its contact pads to allow for high speed attachment of the antenna to the RFID die or die strap. Also disclosed is a method for attaching an RFID antenna having pre-applied adhesive to a die or die strap
Abstract:
A composition for use as a thermal interface material in a heat-generating electronic device is provided. The composition comprises a blend of nitrile rubber and carboxyl-terminated butadiene, carboxyl-terminated butadiene nitrile or a mixture thereof, and conductive filler particles.